These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 8313536)

  • 1. The generation of apurinic/apyrimidinic sites in isolated DNA during the reduction of chromate by glutathione.
    Casadevall M; Kortenkamp A
    Carcinogenesis; 1994 Feb; 15(2):407-9. PubMed ID: 8313536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The formation of both apurinic/apyrimidinic sites and single-strand breaks by chromate and glutathione arises from attack by the same single reactive species and is dependent on molecular oxygen.
    Casadevall M; Kortenkamp A
    Carcinogenesis; 1995 Apr; 16(4):805-9. PubMed ID: 7728959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The reductive conversion of chromium (VI) by ascorbate gives rise to apurinic/apyrimidinic sites in isolated DNA.
    da Cruz Fresco P; Shacker F; Kortenkamp A
    Chem Res Toxicol; 1995 Sep; 8(6):884-90. PubMed ID: 7492738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The formation of DNA cleaving species during the reduction of chromate by ascorbate.
    da Cruz Fresco P; Kortenkamp A
    Carcinogenesis; 1994 Sep; 15(9):1773-8. PubMed ID: 7923568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The generation of DNA single-strand breaks during the reduction of chromate by ascorbic acid and/or glutathione in vitro.
    Kortenkamp A; O'Brien P
    Environ Health Perspect; 1994 Sep; 102 Suppl 3(Suppl 3):237-41. PubMed ID: 7843105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutathione and free amino acids form stable complexes with DNA following exposure of intact mammalian cells to chromate.
    Zhitkovich A; Voitkun V; Costa M
    Carcinogenesis; 1995 Apr; 16(4):907-13. PubMed ID: 7728973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endogenous apurinic/apyrimidinic sites in genomic DNA of mammalian tissues.
    Nakamura J; Swenberg JA
    Cancer Res; 1999 Jun; 59(11):2522-6. PubMed ID: 10363965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The reductive conversion of the carcinogen chromium (VI) and its role in the formation of DNA lesions.
    Kortenkamp A; Casadevall M; Da Cruz Fresco P
    Ann Clin Lab Sci; 1996; 26(2):160-75. PubMed ID: 8852426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variation in Extracellular Detoxification Is a Link to Different Carcinogenicity among Chromates in Rodent and Human Lungs.
    Krawic C; Luczak MW; Zhitkovich A
    Chem Res Toxicol; 2017 Sep; 30(9):1720-1729. PubMed ID: 28759204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of direct adducts, apurinic/apyrimidinic sites and oxidized bases in nuclear DNA of human HeLa S3 tumor cells by tetrachlorohydroquinone.
    Lin PH; Nakamura J; Yamaguchi S; La DK; Upton PB; Swenberg JA
    Carcinogenesis; 2001 Apr; 22(4):635-9. PubMed ID: 11285200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly sensitive apurinic/apyrimidinic site assay can detect spontaneous and chemically induced depurination under physiological conditions.
    Nakamura J; Walker VE; Upton PB; Chiang SY; Kow YW; Swenberg JA
    Cancer Res; 1998 Jan; 58(2):222-5. PubMed ID: 9443396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical models important in understanding the ways in which chromate can damage DNA.
    O'Brien P; Kortenkamp A
    Environ Health Perspect; 1994 Sep; 102 Suppl 3(Suppl 3):3-10. PubMed ID: 7843120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extremely low frequency (ELF) magnetic fields enhance chemically induced formation of apurinic/apyrimidinic (AP) sites in A172 cells.
    Koyama S; Sakurai T; Nakahara T; Miyakoshi J
    Int J Radiat Biol; 2008 Jan; 84(1):53-9. PubMed ID: 17852556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction with glutathione is a weakly mutagenic pathway in chromium(VI) metabolism.
    Guttmann D; Poage G; Johnston T; Zhitkovich A
    Chem Res Toxicol; 2008 Nov; 21(11):2188-94. PubMed ID: 18808157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repair of chromate-induced DNA damage in chick embryo hepatocytes.
    Cupo DY; Wetterhahn KE
    Carcinogenesis; 1984 Dec; 5(12):1705-8. PubMed ID: 6499121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the mechanism of the chromate reduction by glutathione: ESR evidence for the glutathionyl radical and an isolable Cr(V) intermediate.
    Shi XL; Dalal NS
    Biochem Biophys Res Commun; 1988 Oct; 156(1):137-42. PubMed ID: 2845969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of chromium(V) in the mechanism of chromate-induced oxidative DNA damage and cancer.
    Sugden KD; Stearns DM
    J Environ Pathol Toxicol Oncol; 2000; 19(3):215-30. PubMed ID: 10983888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction.
    Ackerley DF; Gonzalez CF; Keyhan M; Blake R; Matin A
    Environ Microbiol; 2004 Aug; 6(8):851-60. PubMed ID: 15250887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ontogenic changes in the nephrotoxicity of chromate correlate with the glutathione oxidoreduction system.
    Appenroth D
    J Trace Elem Electrolytes Health Dis; 1994 Mar; 8(1):33-6. PubMed ID: 7804027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The reduction of chromate is a prerequisite of chromium binding to cell nuclei.
    Kortenkamp A; O'Brien P; Beyersmann D
    Carcinogenesis; 1991 Jun; 12(6):1143-4. PubMed ID: 2044197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.