These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 8313536)

  • 21. The reduction of chromate is a prerequisite of chromium binding to cell nuclei.
    Kortenkamp A; O'Brien P; Beyersmann D
    Carcinogenesis; 1991 Jun; 12(6):1143-4. PubMed ID: 2044197
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chromate nephrotoxicity in developing rats. Significance of Cr(VI) reduction in rat kidney tissue.
    Appenroth D; Friedrich M; Friese KH; Bräunlich H
    J Trace Elem Electrolytes Health Dis; 1991 Mar; 5(1):53-7. PubMed ID: 1822327
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comparison of hepatocyte cytotoxic mechanisms for chromate and arsenite.
    Pourahmad J; Rabiei M; Jokar F; O'brien PJ
    Toxicology; 2005 Jan; 206(3):449-60. PubMed ID: 15588934
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Base-excision repair of oxidative DNA damage by DNA glycosylases.
    Dizdaroglu M
    Mutat Res; 2005 Dec; 591(1-2):45-59. PubMed ID: 16054172
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of vitamin B2 on formation of chromium(V), alkali-labile sites, and lethality of sodium chromate(VI) in Chinese hamster V-79 cells.
    Sugiyama M; Ando A; Nakao K; Ueta H; Hidaka T; Ogura R
    Cancer Res; 1989 Nov; 49(22):6180-4. PubMed ID: 2553247
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chromate toxicity and the role of sulfur.
    Holland SL; Avery SV
    Metallomics; 2011 Nov; 3(11):1119-23. PubMed ID: 21804974
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Apurinic/apyrimidinic endonuclease genes from the trypanosomatidae leishmania major and Trypanosoma cruzi confer resistance to oxidizing agents in DNA repair-deficient Escherichia coli.
    Pérez J; Gallego C; Bernier-Villamor V; Camacho A; González-Pacanowska D; Ruiz-Pérez LM
    Nucleic Acids Res; 1999 Feb; 27(3):771-7. PubMed ID: 9889272
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Repair of apurinic/apyrimidinic sites by UV damage endonuclease; a repair protein for UV and oxidative damage.
    Kanno S; Iwai S; Takao M; Yasui A
    Nucleic Acids Res; 1999 Aug; 27(15):3096-103. PubMed ID: 10454605
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of vitamin E and vitamin B2 on chromate-induced DNA lesions.
    Sugiyama M
    Biol Trace Elem Res; 1989; 21():399-404. PubMed ID: 2484619
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isolation of cDNA clones encoding a human apurinic/apyrimidinic endonuclease that corrects DNA repair and mutagenesis defects in E. coli xth (exonuclease III) mutants.
    Robson CN; Hickson ID
    Nucleic Acids Res; 1991 Oct; 19(20):5519-23. PubMed ID: 1719477
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of vitamin E on survival, glutathione reductase and formation of chromium (V) in Chinese hamster V-79 cells treated with sodium chromate (VI).
    Sugiyama M; Ando A; Ogura R
    Carcinogenesis; 1989 Apr; 10(4):737-41. PubMed ID: 2649268
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxidative activation of the human carcinogen chromate by arsenite: a model for synergistic metal activation leading to oxidative DNA damage.
    Sugden KD; Rigby KM; Martin BD
    Toxicol In Vitro; 2004 Dec; 18(6):741-8. PubMed ID: 15465638
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nonrandom AP site distribution in highly proliferative cells.
    Chastain PD; Nakamura J; Swenberg J; Kaufman D
    FASEB J; 2006 Dec; 20(14):2612-4. PubMed ID: 17068113
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The carcinogen chromate causes DNA damage and inhibits drug-mediated induction of porphyrin accumulation and glucuronidation in chick embryo hepatocytes.
    Tsapakos MJ; Hampton TH; Sinclair PR; Sinclair JF; Bement WJ; Wetterhahn KE
    Carcinogenesis; 1983 Aug; 4(8):959-66. PubMed ID: 6872154
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unusual interaction of human apurinic/apyrimidinic endonuclease 1 (APE1) with abasic sites via the Schiff-base-dependent mechanism.
    Ilina ES; Khodyreva SN; Lavrik OI
    Biochimie; 2018 Jul; 150():88-99. PubMed ID: 29730300
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of two apurinic/apyrimidinic endonucleases from Caenorhabditis elegans by cross-species complementation.
    Shatilla A; Leduc A; Yang X; Ramotar D
    DNA Repair (Amst); 2005 Jun; 4(6):655-70. PubMed ID: 15907773
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The activity of chromate reduction in renal tissue corresponds to chromate nephrotoxicity--developmental aspects.
    Appenroth D; Kersten L
    Toxicol Lett; 1990 Sep; 53(1-2):157-9. PubMed ID: 2219157
    [No Abstract]   [Full Text] [Related]  

  • 38. Catalysts of DNA Strand Cleavage at Apurinic/Apyrimidinic Sites.
    Minko IG; Jacobs AC; de Leon AR; Gruppi F; Donley N; Harris TM; Rizzo CJ; McCullough AK; Lloyd RS
    Sci Rep; 2016 Jul; 6():28894. PubMed ID: 27363485
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of DNA substrate specificities of apurinic/apyrimidinic endonucleases from Mycobacterium tuberculosis.
    Abeldenov S; Talhaoui I; Zharkov DO; Ishchenko AA; Ramanculov E; Saparbaev M; Khassenov B
    DNA Repair (Amst); 2015 Sep; 33():1-16. PubMed ID: 26043425
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chromate tolerance and removal of bacterial strains isolated from uncontaminated and chromium-polluted environments.
    Tamindžija D; Chromikova Z; Spaić A; Barak I; Bernier-Latmani R; Radnović D
    World J Microbiol Biotechnol; 2019 Mar; 35(4):56. PubMed ID: 30900044
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.