These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 8314749)

  • 1. Functional interactions between K+ pore residues located in different subunits.
    Kirsch GE; Drewe JA; De Biasi M; Hartmann HA; Brown AM
    J Biol Chem; 1993 Jul; 268(19):13799-804. PubMed ID: 8314749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MinK endows the I(Ks) potassium channel pore with sensitivity to internal tetraethylammonium.
    Sesti F; Tai KK; Goldstein SA
    Biophys J; 2000 Sep; 79(3):1369-78. PubMed ID: 10968999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cooperative interactions among subunits of a voltage-dependent potassium channel. Evidence from expression of concatenated cDNAs.
    Hurst RS; Kavanaugh MP; Yakel J; Adelman JP; North RA
    J Biol Chem; 1992 Nov; 267(33):23742-5. PubMed ID: 1385425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutations affecting TEA blockade and ion permeation in voltage-activated K+ channels.
    MacKinnon R; Yellen G
    Science; 1990 Oct; 250(4978):276-9. PubMed ID: 2218530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rescue of lethal subunits into functional K+ channels.
    Taglialatela M; Payne JP; Drewe JA; Brown AM
    Biophys J; 1994 Jan; 66(1):179-90. PubMed ID: 8130337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple residues specify external tetraethylammonium blockade in voltage-gated potassium channels.
    Pascual JM; Shieh CC; Kirsch GE; Brown AM
    Biophys J; 1995 Aug; 69(2):428-34. PubMed ID: 8527656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A structural motif for the voltage-gated potassium channel pore.
    Lipkind GM; Hanck DA; Fozzard HA
    Proc Natl Acad Sci U S A; 1995 Sep; 92(20):9215-9. PubMed ID: 7568104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutational analysis of ion conduction and drug binding sites in the inner mouth of voltage-gated K+ channels.
    Shieh CC; Kirsch GE
    Biophys J; 1994 Dec; 67(6):2316-25. PubMed ID: 7696472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence that the S6 segment of the Shaker voltage-gated K+ channel comprises part of the pore.
    Lopez GA; Jan YN; Jan LY
    Nature; 1994 Jan; 367(6459):179-82. PubMed ID: 8114915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional characterization of a minimal K+ channel expressed from a synthetic gene.
    Hausdorff SF; Goldstein SA; Rushin EE; Miller C
    Biochemistry; 1991 Apr; 30(13):3341-6. PubMed ID: 2009272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutations affecting internal TEA blockade identify the probable pore-forming region of a K+ channel.
    Yellen G; Jurman ME; Abramson T; MacKinnon R
    Science; 1991 Feb; 251(4996):939-42. PubMed ID: 2000494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A neuronal beta subunit (KCNMB4) makes the large conductance, voltage- and Ca2+-activated K+ channel resistant to charybdotoxin and iberiotoxin.
    Meera P; Wallner M; Toro L
    Proc Natl Acad Sci U S A; 2000 May; 97(10):5562-7. PubMed ID: 10792058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exchange of conduction pathways between two related K+ channels.
    Hartmann HA; Kirsch GE; Drewe JA; Taglialatela M; Joho RH; Brown AM
    Science; 1991 Feb; 251(4996):942-4. PubMed ID: 2000495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs.
    Liman ER; Tytgat J; Hess P
    Neuron; 1992 Nov; 9(5):861-71. PubMed ID: 1419000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional role of a conserved aspartate in the external mouth of voltage-gated potassium channels.
    Kirsch GE; Pascual JM; Shieh CC
    Biophys J; 1995 May; 68(5):1804-13. PubMed ID: 7612822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Residues in a jellyfish shaker-like channel involved in modulation by external potassium.
    Grigoriev NG; Spafford JD; Spencer AN
    J Neurophysiol; 1999 Oct; 82(4):1740-7. PubMed ID: 10515963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heteromultimeric assembly of human potassium channels. Molecular basis of a transient outward current?
    Po S; Roberds S; Snyders DJ; Tamkun MM; Bennett PB
    Circ Res; 1993 Jun; 72(6):1326-36. PubMed ID: 8495559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voltage-controlled gating in a large conductance Ca2+-sensitive K+channel (hslo).
    Stefani E; Ottolia M; Noceti F; Olcese R; Wallner M; Latorre R; Toro L
    Proc Natl Acad Sci U S A; 1997 May; 94(10):5427-31. PubMed ID: 9144254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple subunits of a voltage-dependent potassium channel contribute to the binding site for tetraethylammonium.
    Kavanaugh MP; Hurst RS; Yakel J; Varnum MD; Adelman JP; North RA
    Neuron; 1992 Mar; 8(3):493-7. PubMed ID: 1550674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences between the deep pores of K+ channels determined by an interacting pair of nonpolar amino acids.
    Kirsch GE; Drewe JA; Hartmann HA; Taglialatela M; de Biasi M; Brown AM; Joho RH
    Neuron; 1992 Mar; 8(3):499-505. PubMed ID: 1550675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.