These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
308 related articles for article (PubMed ID: 8314993)
1. New method for plague surveillance using polymerase chain reaction to detect Yersinia pestis in fleas. Hinnebusch J; Schwan TG J Clin Microbiol; 1993 Jun; 31(6):1511-4. PubMed ID: 8314993 [TBL] [Abstract][Full Text] [Related]
2. Zoonotic focus of plague, Algeria. Bitam I; Baziz B; Rolain JM; Belkaid M; Raoult D Emerg Infect Dis; 2006 Dec; 12(12):1975-7. PubMed ID: 17326957 [TBL] [Abstract][Full Text] [Related]
3. Pentaplex real-time PCR for differential detection of Yersinia pestis and Y. pseudotuberculosis and application for testing fleas collected during plague epizootics. Bai Y; Motin V; Enscore RE; Osikowicz L; Rosales Rizzo M; Hojgaard A; Kosoy M; Eisen RJ Microbiologyopen; 2020 Oct; 9(10):e1105. PubMed ID: 32783386 [TBL] [Abstract][Full Text] [Related]
4. A combination of different polymerase chain reaction (PCR) assays for the presumptive identification of Yersinia pestis. Neubauer H; Meyer H; Prior J; Aleksic S; Hensel A; Splettstösser W J Vet Med B Infect Dis Vet Public Health; 2000 Oct; 47(8):573-80. PubMed ID: 11075545 [TBL] [Abstract][Full Text] [Related]
5. Detection of novel Bartonella strains and Yersinia pestis in prairie dogs and their fleas (Siphonaptera: Ceratophyllidae and Pulicidae) using multiplex polymerase chain reaction. Stevenson HL; Bai Y; Kosoy MY; Montenieri JA; Lowell JL; Chu MC; Gage KL J Med Entomol; 2003 May; 40(3):329-37. PubMed ID: 12943112 [TBL] [Abstract][Full Text] [Related]
6. 5' nuclease PCR assay to detect Yersinia pestis. Higgins JA; Ezzell J; Hinnebusch BJ; Shipley M; Henchal EA; Ibrahim MS J Clin Microbiol; 1998 Aug; 36(8):2284-8. PubMed ID: 9666006 [TBL] [Abstract][Full Text] [Related]
7. Biovar-related differences apparent in the flea foregut colonization phenotype of distinct Yersinia pestis strains do not impact transmission efficiency. Lemon A; Sagawa J; Gravelle K; Vadyvaloo V Parasit Vectors; 2020 Jul; 13(1):335. PubMed ID: 32611387 [TBL] [Abstract][Full Text] [Related]
8. Quantities of Yersinia pestis in fleas (Siphonaptera: Pulicidae, Ceratophyllidae, and Hystrichopsyllidae) collected from areas of known or suspected plague activity. Engelthaler DM; Gage KL J Med Entomol; 2000 May; 37(3):422-6. PubMed ID: 15535587 [TBL] [Abstract][Full Text] [Related]
9. Detection of Yersinia pestis DNA in prairie dog-associated fleas by polymerase chain reaction assay of purified DNA. Griffin KA; Martin DJ; Rosen LE; Sirochman MA; Walsh DP; Wolfe LL; Miller MW J Wildl Dis; 2010 Apr; 46(2):636-43. PubMed ID: 20688665 [TBL] [Abstract][Full Text] [Related]
10. Quantitative competitive PCR as a technique for exploring flea-Yersina pestis dynamics. Engelthaler DM; Hinnebusch BJ; Rittner CM; Gage KL Am J Trop Med Hyg; 2000 May; 62(5):552-60. PubMed ID: 11289663 [TBL] [Abstract][Full Text] [Related]
11. Potential Roles of Pigs, Small Ruminants, Rodents, and Their Flea Vectors in Plague Epidemiology in Sinda District, Eastern Zambia. Nyirenda SS; Hang'ombe BM; Kilonzo BS; Kangwa HL; Mulenga E; Moonga L J Med Entomol; 2017 May; 54(3):719-725. PubMed ID: 28399281 [TBL] [Abstract][Full Text] [Related]
12. Use of DNA hybridizations probes for detection of the plague bacillus (Yersinia pestis) in fleas (Siphonaptera: Pulicidae and Ceratophyllidae). Thomas RE; McDonough KA; Schwan TG J Med Entomol; 1989 Jul; 26(4):342-8. PubMed ID: 2769715 [TBL] [Abstract][Full Text] [Related]
14. Estimation of vector infectivity rates for plague by means of a standard curve-based competitive polymerase chain reaction method to quantify Yersinia pestis in fleas. Hinnebusch BJ; Gage KL; Schwan TG Am J Trop Med Hyg; 1998 May; 58(5):562-9. PubMed ID: 9598442 [TBL] [Abstract][Full Text] [Related]
15. Mutation in the pla gene of Yersinia pestis alters the course of the plague bacillus-flea (Siphonaptera: Ceratophyllidae) interaction. McDonough KA; Barnes AM; Quan TJ; Montenieri J; Falkow S J Med Entomol; 1993 Jul; 30(4):772-80. PubMed ID: 8360901 [TBL] [Abstract][Full Text] [Related]
16. Molecular epidemiological investigations of plague in Eastern Province of Zambia. Nyirenda SS; Hang Ombe BM; Simulundu E; Mulenga E; Moonga L; Machang U RS; Misinzo G; Kilonzo BS BMC Microbiol; 2018 Jan; 18(1):2. PubMed ID: 29433443 [TBL] [Abstract][Full Text] [Related]
17. Bacterial communities associated with flea vectors of plague. Erickson DL; Anderson NE; Cromar LM; Jolley A J Med Entomol; 2009 Nov; 46(6):1532-6. PubMed ID: 19960708 [TBL] [Abstract][Full Text] [Related]
18. Comparative Ability of Oropsylla montana and Xenopsylla cheopis Fleas to Transmit Yersinia pestis by Two Different Mechanisms. Hinnebusch BJ; Bland DM; Bosio CF; Jarrett CO PLoS Negl Trop Dis; 2017 Jan; 11(1):e0005276. PubMed ID: 28081130 [TBL] [Abstract][Full Text] [Related]
19. Transovarial transmission of Yersinia pestis in its flea vector Xenopsylla cheopis. Pauling CD; Beerntsen BT; Song Q; Anderson DM Nat Commun; 2024 Aug; 15(1):7266. PubMed ID: 39179552 [TBL] [Abstract][Full Text] [Related]
20. Yersinia murine toxin is not required for early-phase transmission of Yersinia pestis by Oropsylla montana (Siphonaptera: Ceratophyllidae) or Xenopsylla cheopis (Siphonaptera: Pulicidae). Johnson TL; Hinnebusch BJ; Boegler KA; Graham CB; MacMillan K; Montenieri JA; Bearden SW; Gage KL; Eisen RJ Microbiology (Reading); 2014 Nov; 160(Pt 11):2517-2525. PubMed ID: 25187626 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]