These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 8315415)

  • 1. The reconstruction of an astrocytic environment in glia-deficient areas of white matter.
    Franklin RJ; Crang AJ; Blakemore WF
    J Neurocytol; 1993 May; 22(5):382-96. PubMed ID: 8315415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Type 1 astrocytes fail to inhibit Schwann cell remyelination of CNS axons in the absence of cells of the O-2A lineage.
    Franklin RJ; Crang AJ; Blakemore WF
    Dev Neurosci; 1992; 14(2):85-92. PubMed ID: 1396178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glial cell transplants that are subsequently rejected can be used to influence regeneration of glial cell environments in the CNS.
    Blakemore WF; Crang AJ; Franklin RJ; Tang K; Ryder S
    Glia; 1995 Feb; 13(2):79-91. PubMed ID: 7649617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glial-glial and glial-neuronal interfaces in radiation-induced, glia-depleted spinal cord.
    Gilmore SA; Sims TJ
    J Anat; 1997 Jan; 190 ( Pt 1)(Pt 1):5-21. PubMed ID: 9034878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transplanted type-1 astrocytes facilitate repair of demyelinating lesions by host oligodendrocytes in adult rat spinal cord.
    Franklin RJ; Crang AJ; Blakemore WF
    J Neurocytol; 1991 May; 20(5):420-30. PubMed ID: 1869880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstruction of the glial environment of a photochemically induced lesion in the rat spinal cord by transplantation of mixed glial cells.
    Olby NJ; Blakemore WF
    J Neurocytol; 1996 Aug; 25(8):481-98. PubMed ID: 8899569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transplanted cultured type-1 astrocytes can be used to reconstitute the glia limitans of the CNS: the structure which prevents Schwann cells from myelinating CNS axons.
    Blakemore WF
    Neuropathol Appl Neurobiol; 1992 Oct; 18(5):460-6. PubMed ID: 1454135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The relationship between type-1 astrocytes, Schwann cells and oligodendrocytes following transplantation of glial cell cultures into demyelinating lesions in the adult rat spinal cord.
    Blakemore WF; Crang AJ
    J Neurocytol; 1989 Aug; 18(4):519-28. PubMed ID: 2809635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstruction of the glia limitans by sub-arachnoid transplantation of astrocyte-enriched cultures.
    Franklin RJ; Blakemore WF
    Microsc Res Tech; 1995 Nov; 32(4):295-301. PubMed ID: 8573779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Schwann cells transplanted into normal and X-irradiated adult white matter do not migrate extensively and show poor long-term survival.
    Iwashita Y; Fawcett JW; Crang AJ; Franklin RJ; Blakemore WF
    Exp Neurol; 2000 Aug; 164(2):292-302. PubMed ID: 10915568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glial development in primary cultures established from normal and X-irradiated neonatal spinal cord.
    Sims TJ; Davies DL; Gilmore SA
    Glia; 1994 Dec; 12(4):319-28. PubMed ID: 7890334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differentiation of the O-2A progenitor cell line CG-4 into oligodendrocytes and astrocytes following transplantation into glia-deficient areas of CNS white matter.
    Franklin RJ; Bayley SA; Milner R; Ffrench-Constant C; Blakemore WF
    Glia; 1995 Jan; 13(1):39-44. PubMed ID: 7751054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ethidium bromide induced demyelination in the spinal cord of the cat.
    Blakemore WF
    Neuropathol Appl Neurobiol; 1982; 8(5):365-75. PubMed ID: 7177337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of transplanted glial cells to reconstruct glial environments in the CNS.
    Blakemore WF; Olby NJ; Franklin RJ
    Brain Pathol; 1995 Oct; 5(4):443-50. PubMed ID: 8974627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The differentiation of glial cell progenitor populations following transplantation into non-repairing central nervous system glial lesions in adult animals.
    Crang AJ; Franklin RJ; Blakemore WF; Noble M; Barnett SC; Groves A; Trotter J; Schachner M
    J Neuroimmunol; 1992 Oct; 40(2-3):243-53. PubMed ID: 1430154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Remyelination of demyelinated rat axons by transplanted mouse oligodendrocytes.
    Crang AJ; Blakemore WF
    Glia; 1991; 4(3):305-13. PubMed ID: 1832658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extensive oligodendrocyte remyelination following injection of cultured central nervous system cells into demyelinating lesions in adult central nervous system.
    Blakemore WF; Crang AJ
    Dev Neurosci; 1988; 10(1):1-11. PubMed ID: 3371228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Serial changes in granuloprival cerebellar cultures after transplantation with granule cells and glia: a timed ultrastructural study.
    Seil FJ
    Neuroscience; 1997 Apr; 77(3):695-711. PubMed ID: 9070746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Restoration of normal conduction properties in demyelinated spinal cord axons in the adult rat by transplantation of exogenous Schwann cells.
    Honmou O; Felts PA; Waxman SG; Kocsis JD
    J Neurosci; 1996 May; 16(10):3199-208. PubMed ID: 8627358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perinodal astrocytic processes at nodes of Ranvier in developing normal and glial cell deficient rat spinal cord.
    Sims TJ; Waxman SG; Black JA; Gilmore SA
    Brain Res; 1985 Jul; 337(2):321-31. PubMed ID: 4027576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.