These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 8316229)

  • 41. Effect of the aminosteroid, U73122, on Ca2+ uptake and release properties of rat liver microsomes.
    De Moel MP; Van de Put FH; Vermegen TM; De Pont JH; Willems PH
    Eur J Biochem; 1995 Dec; 234(2):626-31. PubMed ID: 8536712
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Mg2+,ATP-dependent transport of Ca2+ in the endoplasmic reticulum of myometrial cells].
    Kosterin SA; Babich LG; Shlykov SG; Rovenets NA
    Biokhimiia; 1996 Jan; 61(1):73-81. PubMed ID: 8679780
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ethanol increases the formation of NADP+ in rat hepatocytes.
    Akinshola BE; Potter JJ; Mezey E
    Hepatology; 1991 Mar; 13(3):509-14. PubMed ID: 1999321
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hepatic calcium efflux during cytochrome P-450-dependent drug oxidations at the endoplasmic reticulum in intact liver.
    Sies H; Graf P; Estrela JM
    Proc Natl Acad Sci U S A; 1981 Jun; 78(6):3358-62. PubMed ID: 6943544
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The Ca2+-binding glycoprotein as the site of metabolic regulation of mitochondrial Ca2+ movements.
    Panfili E; Sottocasa GL; Sandri G; Liut G
    Eur J Biochem; 1980 Mar; 105(1):205-10. PubMed ID: 7371640
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pyridine nucleotide regulation of hepatic endoplasmic reticulum calcium uptake.
    Wang X; Mick G; McCormick K
    Physiol Rep; 2019 Jul; 7(12):e14151. PubMed ID: 31222964
    [TBL] [Abstract][Full Text] [Related]  

  • 47. New aspects of nuclear calcium signalling.
    Gerasimenko O; Gerasimenko J
    J Cell Sci; 2004 Jul; 117(Pt 15):3087-94. PubMed ID: 15226390
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Properties of NAD-glycohydrolase of the nuclei of the liver cells of rats].
    Pakyrbaéva LV; Shushevich SI; Khalmuradov AH; Chahovets' RV
    Ukr Biokhim Zh; 1975; 47(1):3-7. PubMed ID: 830
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inhibition of bovine kidney alpha-ketoglutarate dehydrogenase complex by reduced nicotinamide adenine dinucleotide in the presence or absence of calcium ion and effect of adenosine 5'-diphosphate on reduced nicotinamide adenine dinucleotide inhibition.
    Lawlis VB; Roche TE
    Biochemistry; 1981 Apr; 20(9):2519-24. PubMed ID: 6894547
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Content of nicotinamide coenzymes in rat liver under conditions of nicotinamide administration].
    Mogilevich SE; Velikiĭ MM; Parkhomets' PK
    Ukr Biokhim Zh; 1977; 49(6):39-43. PubMed ID: 22148
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pyridine-nucleotide oxidation, Ca2+ cycling and membrane damage during tert-butyl hydroperoxide metabolism by rat-liver mitochondria.
    Bellomo G; Martino A; Richelmi P; Moore GA; Jewell SA; Orrenius S
    Eur J Biochem; 1984 Apr; 140(1):1-6. PubMed ID: 6705788
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Adenosine stimulates calcium influx in isolated rat hepatocytes.
    Tinton SA; Chow SC; Buc-Calderon PM; Kass GE
    Eur J Biochem; 1996 Jun; 238(2):576-81. PubMed ID: 8681974
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of perfusate [Ca2+] on cardiac sarcoplasmic reticulum Ca2+ release channel in isolated rat hearts.
    Abdelmeguid AE; Feher JJ
    Circ Res; 1992 Nov; 71(5):1049-58. PubMed ID: 1382883
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ryanodine-, IP3- and NAADP-dependent calcium stores control acetylcholine release.
    Chameau P; Van de Vrede Y; Fossier P; Baux G
    Pflugers Arch; 2001 Nov; 443(2):289-96. PubMed ID: 11713656
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Intracellular calcium release is more efficient than calcium influx in stimulating mitochondrial NAD(P)H formation in adrenal glomerulosa cells.
    Rohács T; Tory K; Dobos A; Spät A
    Biochem J; 1997 Dec; 328 ( Pt 2)(Pt 2):525-8. PubMed ID: 9371711
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interaction of ferric complexes with rat liver nuclei to catalyze NADH-and NADPH-Dependent production of oxygen radicals.
    Kukiełka E; Puntarulo S; Cederbaum AI
    Arch Biochem Biophys; 1989 Sep; 273(2):319-30. PubMed ID: 2774554
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of calcium on mitochondrial NAD(P)H in paced rat ventricular myocytes.
    White RL; Wittenberg BA
    Biophys J; 1995 Dec; 69(6):2790-9. PubMed ID: 8599685
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cytoplasmic Ca2+ at low submicromolar concentration stimulates mitochondrial metabolism in rat luteal cells.
    Szabadkai G; Pitter JG; Spät A
    Pflugers Arch; 2001 Feb; 441(5):678-85. PubMed ID: 11294250
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Respiratory activity of isolated rat liver nuclear membranes and nuclei].
    Kuz'mina SN; Monakhov NK; Gaĭtskhoki VS; Neĭfakh SA; Zbarskiĭ IB
    Dokl Akad Nauk SSSR; 1970; 191(1):215-7. PubMed ID: 4394253
    [No Abstract]   [Full Text] [Related]  

  • 60. Calcium sequestration activity in rat liver microsomes. Evidence for a cooperation of calcium transport with glucose-6-phosphatase.
    Benedetti A; Fulceri R; Comporti M
    Biochim Biophys Acta; 1985 Jun; 816(2):267-77. PubMed ID: 2988615
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.