These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 8316229)

  • 81. Characterization of two different Ca2+ entry pathways dependent on depletion of internal Ca2+ pools in rat aorta.
    Noguera MA; Madrero Y; Ivorra MD; D'Ocon P
    Naunyn Schmiedebergs Arch Pharmacol; 1998 Feb; 357(2):92-9. PubMed ID: 9521481
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Ryanodine produces a low frequency stimulation-induced NMDA receptor-independent long-term potentiation in the rat dentate gyrus in vitro.
    Wang Y; Wu J; Rowan MJ; Anwyl R
    J Physiol; 1996 Sep; 495 ( Pt 3)(Pt 3):755-67. PubMed ID: 8887781
    [TBL] [Abstract][Full Text] [Related]  

  • 83. An ATP-dependent iron transport system in isolated rat liver nuclei.
    Gurgueira SA; Meneghini R
    J Biol Chem; 1996 Jun; 271(23):13616-20. PubMed ID: 8662653
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Transformation and actions of extracellular NADP(+) in the rat liver.
    Broetto-Biazon AC; Kangussu MM; Padilha F; Bracht F; Kelmer-Bracht AM; Bracht A
    Mol Cell Biochem; 2008 Oct; 317(1-2):85-95. PubMed ID: 18548198
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Fluorescence of nicotinamide adenine dinucleotides during the active transport of Ca 2+ ions in liver mitochondria.
    Vinogradov AD; Leikin JN
    J Bioenerg; 1972 Jun; 3(3):203-9. PubMed ID: 4403150
    [No Abstract]   [Full Text] [Related]  

  • 86. The nicotinamide adenine dinucleotides as allosteric effectors of human hemoglobin.
    Cashon R; Bonaventura C; Bonaventura J; Focesi A
    J Biol Chem; 1986 Sep; 261(27):12700-5. PubMed ID: 3745207
    [TBL] [Abstract][Full Text] [Related]  

  • 87. An assay procedure for nicotinamide-adenine dinucleotides in rat liver and other tissues.
    Slater TF; Sawyer B; Sträuli U
    Arch Int Physiol Biochim; 1964 Jun; 72(3):427-47. PubMed ID: 4157673
    [No Abstract]   [Full Text] [Related]  

  • 88. Evidence for the presence of active and inactive forms of cytosolic triiodothyronine binding protein in rat kidney: cooperative action of Ca2+ in NADPH activation.
    Hashizume K; Miyamoto T; Nishii Y; Kobayashi M
    Endocrinol Jpn; 1987 Aug; 34(4):479-87. PubMed ID: 3678149
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Species difference in metabolism of parathion. apparent inability of hepatopancreas fractions to produce paraoxon.
    Elmamlouk TH; Gessner T
    Comp Biochem Physiol C Comp Pharmacol; 1976; 53(1):19-24. PubMed ID: 3377
    [No Abstract]   [Full Text] [Related]  

  • 90. Nuclear and microsomal nicotinamide-adenine dinucleotidases of rat liver.
    Banay-Schwartz M; Benziman M; Strecker HJ
    Comp Biochem Physiol; 1969 Jan; 28(1):177-84. PubMed ID: 4388443
    [No Abstract]   [Full Text] [Related]  

  • 91. Isolation of liver nuclei that retain functional trans-membrane transport.
    Ho YF; Guenthner TM
    J Pharmacol Toxicol Methods; 1997 Nov; 38(3):163-8. PubMed ID: 9523770
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Characterization of NAD uptake in mammalian cells.
    Billington RA; Travelli C; Ercolano E; Galli U; Roman CB; Grolla AA; Canonico PL; Condorelli F; Genazzani AA
    J Biol Chem; 2008 Mar; 283(10):6367-74. PubMed ID: 18180302
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Effect of graded hypoxia on high-affinity Ca2+-ATPase activity in cortical neuronal nuclei of newborn piglets.
    Mishra OP; Delivoria-Papadopoulos M
    Neurochem Res; 2001 Dec; 26(12):1335-41. PubMed ID: 11885786
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Alteration in calcium content and Ca2+-ATPase activity in the liver nuclei of rats orally administered carbon tetrachloride.
    Katsumata T; Murata T; Yamaguchi M
    Mol Cell Biochem; 1998 Aug; 185(1-2):153-9. PubMed ID: 9746221
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Effect of apoptosis-related compounds on Ca2+ transport system in isolated rat liver nuclei.
    Ueoka S; Yamaguchi M
    Mol Cell Biochem; 1997 Jan; 166(1-2):183-9. PubMed ID: 9046036
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Characterization of Ca(2+)-stimulated adenosine 5'-triphosphatase and Ca2+ sequestering in rat liver nuclei.
    Yamaguchi M; Oishi K
    Mol Cell Biochem; 1993 Aug; 125(1):43-9. PubMed ID: 8264571
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Involvement of Ca(2+)-stimulated adenosine 5'-triphosphatase in the Ca2+ releasing mechanism of rat liver nuclei.
    Yamaguchi M; Oishi K
    Mol Cell Biochem; 1994 Feb; 131(2):167-72. PubMed ID: 8035782
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Nuclear Ca2+: physiological regulation and role in apoptosis.
    Nicotera P; Rossi AD
    Mol Cell Biochem; 1994 Jun; 135(1):89-98. PubMed ID: 7816060
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Enhancement of nuclear Ca(2+)-ATPase activity in regenerating rat liver: involvement of nuclear DNA increase.
    Kanayama Y; Yamaguchi M
    Mol Cell Biochem; 1995 May; 146(2):179-86. PubMed ID: 7565648
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Effect of nuclear Ca2+ uptake inhibitors on Ca(2+)-activated DNA fragmentation in rat liver nuclei.
    Yamaguchi M; Oishi K
    Mol Cell Biochem; 1995 Jul; 148(1):33-7. PubMed ID: 7476931
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.