These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 8316626)
1. A comparison of the enhancement of radiation sensitivity and DNA polymerase inactivation by hyperthermia in human glioma cells. Raaphorst GP; Feeley MM; Chu GL; Dewey WC Radiat Res; 1993 Jun; 134(3):331-6. PubMed ID: 8316626 [TBL] [Abstract][Full Text] [Related]
2. Heat radiosensitization and the level of DNA polymerases alpha and beta of human colony-forming unit-granulocyte-macrophage and myeloid leukemias sensitive and resistant to chemotherapeutic agents. Mivechi NF; Miyachi H; Scanlon KJ Cancer Res; 1990 Apr; 50(7):2044-8. PubMed ID: 2317794 [TBL] [Abstract][Full Text] [Related]
3. DNA polymerase alpha and beta activities during the cell cycle and their role in heat radiosensitization in Chinese hamster ovary cells. Mivechi NF; Dewey WC Radiat Res; 1985 Sep; 103(3):337-50. PubMed ID: 4041063 [TBL] [Abstract][Full Text] [Related]
4. Combined effect of hyperthermia at 42 degrees C and irradiation dose of 2 Gy on two rat yolk sac tumor cell lines with different radio-thermosensitivity in vitro. Tamaki Y; Mitsuhashi N; Sakurai H; Islam MS; Takahashi T; Akimoto T; Ishikawa H; Saitoh J; Muramatsu H; Niibe H Anticancer Res; 2002; 22(6A):3143-8. PubMed ID: 12530057 [TBL] [Abstract][Full Text] [Related]
5. Arrhenius relationships from the molecule and cell to the clinic. Dewey WC Int J Hyperthermia; 2009 Feb; 25(1):3-20. PubMed ID: 19219695 [TBL] [Abstract][Full Text] [Related]
6. Comparison of thermoradiosensitization in two human melanoma cell lines and one fibroblast cell line by concurrent mild hyperthermia and low-dose-rate irradiation. Raaphorst GP; Bussey A; Heller DP; Ng CE Radiat Res; 1994 Mar; 137(3):338-45. PubMed ID: 8146277 [TBL] [Abstract][Full Text] [Related]
7. Cell killing, DNA polymerase inactivation and radiosensitization to low dose rate irradiation by mild hyperthermia in four human cell lines. Raaphorst GP; Yang DP; Bussey A; Ng CE Int J Hyperthermia; 1995; 11(6):841-54. PubMed ID: 8586905 [TBL] [Abstract][Full Text] [Related]
8. Sensitivity of human cells to mild hyperthermia. Armour EP; McEachern D; Wang Z; Corry PM; Martinez A Cancer Res; 1993 Jun; 53(12):2740-4. PubMed ID: 8504414 [TBL] [Abstract][Full Text] [Related]
9. Interactions between hyperthermia and irradiation in two human lymphoblastic leukemia cell lines in vitro. Cohen JD; Robins HI; Mulcahy RT; Gipp JJ; Bouck N Cancer Res; 1988 Jul; 48(13):3576-80. PubMed ID: 3259904 [TBL] [Abstract][Full Text] [Related]
10. DNA polymerase activity in heat killing and hyperthermic radiosensitization of mammalian cells as observed after fractionated heat treatments. Jorritsma JB; Burgman P; Kampinga HH; Konings AW Radiat Res; 1986 Mar; 105(3):307-19. PubMed ID: 3754338 [TBL] [Abstract][Full Text] [Related]
11. Is DNA polymerase beta important in thermal radiosensitization? Raaphorst GP; Yang DP; Niedbala G Int J Hyperthermia; 2004 Mar; 20(2):140-3. PubMed ID: 15195508 [TBL] [Abstract][Full Text] [Related]
12. p53-dependent thermal enhancement of cellular sensitivity in human squamous cell carcinomas in relation to LET. Takahashi A; Ohnishi K; Ota I; Asakawa I; Tamamoto T; Furusawa Y; Matsumoto H; Ohnishi T Int J Radiat Biol; 2001 Oct; 77(10):1043-51. PubMed ID: 11682009 [TBL] [Abstract][Full Text] [Related]
13. Thermal enhancement of cellular radiation damage: a review of complementary and synergistic effects. Raaphorst GP; Szekely JG Scanning Microsc; 1988 Mar; 2(1):513-35. PubMed ID: 3285465 [TBL] [Abstract][Full Text] [Related]
14. Effect of glycerol and low pH on heat-induced cell killing and loss of cellular DNA polymerase activities in Chinese hamster ovary cells. Mivechi NF; Dewey WC Radiat Res; 1984 Aug; 99(2):352-62. PubMed ID: 6540462 [TBL] [Abstract][Full Text] [Related]
15. Comparison of hyperthermia radiosensitization and DNA polymerase inactivation in human normal and melanoma cell lines of different radiosensitivities. Raaphorst GP; Mao JP; Yang DP; Ng CE Radiat Oncol Investig; 1997; 5(1):1-7. PubMed ID: 9303050 [TBL] [Abstract][Full Text] [Related]
16. The involvement of topoisomerases and DNA polymerase I in the mechanism of induced thermal and radiation resistance in yeast. Boreham DR; Trivedi A; Weinberger P; Mitchel RE Radiat Res; 1990 Aug; 123(2):203-12. PubMed ID: 2167497 [TBL] [Abstract][Full Text] [Related]
17. Radiosensitization of heat resistant human tumour cells by 1 hour at 41.1 degrees C and its effect on DNA repair. Xu M; Myerson RJ; Straube WL; Moros EG; Lagroye I; Wang LL; Lee JT; Roti Roti JL Int J Hyperthermia; 2002; 18(5):385-403. PubMed ID: 12227926 [TBL] [Abstract][Full Text] [Related]
18. Repair of potentially lethal damage: its inhibition by hyperthermia in two human melanoma cell lines with different radio- and heat sensitivities. Raaphorst GP; Mao JP; Ng CE Melanoma Res; 1993 Oct; 3(5):351-6. PubMed ID: 8292892 [TBL] [Abstract][Full Text] [Related]
19. The effects of hyperthermia and ionizing radiation in normal and ataxia telangiectasia human fibroblast lines. Mitchel RE; Chan A; Smith BP; Child SD; Paterson MC Radiat Res; 1984 Sep; 99(3):627-35. PubMed ID: 6473716 [TBL] [Abstract][Full Text] [Related]
20. Hyperthermia radiosensitization in human glioma cells comparison of recovery of polymerase activity, survival, and potentially lethal damage repair. Raaphorst GP; Feeley MM Int J Radiat Oncol Biol Phys; 1994 Apr; 29(1):133-9. PubMed ID: 8175420 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]