These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 8316791)

  • 1. Strontium, a tracer to study the transport of calcium in mineralizing tissues by electron probe microanalysis.
    Krefting ER; Frentzel K; Tessarek J; Höhling HJ
    Scanning Microsc; 1993 Mar; 7(1):203-7. PubMed ID: 8316791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strontium as a tracer to study the transport of calcium in the epiphyseal growth plate (electronprobe microanalysis).
    Krefting ER; Höhling HJ; Felsmann M; Richter KD
    Histochemistry; 1988; 88(3-6):321-6. PubMed ID: 3366637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strontium and bromide as tracers in X-ray microanalysis of biological tissue.
    Wroblewski J; Sagström S; Mulders H; Roomans GM
    Scanning Microsc; 1989 Sep; 3(3):861-4. PubMed ID: 2617268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of electron probe X-ray microanalysis to calcification studies of bone and cartilage.
    Landis WJ
    Scan Electron Microsc; 1979; (2):555-70. PubMed ID: 524025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular site of Sr2+ and Ba2+ accumulation in frog twitch muscle fibres as determined by electron probe X-ray microanalysis.
    Uhrík B; Zacharová D
    Gen Physiol Biophys; 1988 Dec; 7(6):569-79. PubMed ID: 3266488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray microanalysis of cartilage and chondrocytes.
    Wroblewski J; Makower AM
    Scanning Microsc; 1988 Jun; 2(2):1103-11. PubMed ID: 3399850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of strontium on the physicochemical characteristics of hydroxyapatite.
    Verberckmoes SC; Behets GJ; Oste L; Bervoets AR; Lamberts LV; Drakopoulos M; Somogyi A; Cool P; Dorriné W; De Broe ME; D'Haese PC
    Calcif Tissue Int; 2004 Nov; 75(5):405-15. PubMed ID: 15592797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elemental analysis and fine structure of mitochondrial granules in growth plate chondrocytes studied by electron energy loss spectroscopy and energy dispersive X-ray microanalysis.
    Wroblewski J; Wróblewski R; Mory C; Colliex C
    Scanning Microsc; 1991 Sep; 5(3):885-92; discussion 893-4. PubMed ID: 1808719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mineralization of bone tissue: a forgotten dimension in osteoporosis research.
    Boivin G; Meunier PJ
    Osteoporos Int; 2003; 14 Suppl 3():S19-24. PubMed ID: 12730799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray microanalysis of growth cartilage after rapid freezing, low temperature freeze drying and embedding in resin.
    Appleton J
    Scanning Microsc; 1987 Sep; 1(3):1135-44. PubMed ID: 3310204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium and magnesium in exocrine secretion--an X-ray microanalytical study.
    Roomans GM; Barnard T
    Scan Electron Microsc; 1982; (Pt 1):229-42. PubMed ID: 7167746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted overexpression of vitamin D receptor in osteoblasts increases calcium concentration without affecting structural properties of bone mineral crystals.
    Misof BM; Roschger P; Tesch W; Baldock PA; Valenta A; Messmer P; Eisman JA; Boskey AL; Gardiner EM; Fratzl P; Klaushofer K
    Calcif Tissue Int; 2003 Sep; 73(3):251-7. PubMed ID: 14667138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytosolic ionized calcium concentration in isolated chondrocytes from each zone of the growth plate.
    Iannotti JP; Brighton CT
    J Orthop Res; 1989; 7(4):511-8. PubMed ID: 2738769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth plate matrix vesicle biogenesis. The role of intracellular calcium.
    Iannotti JP; Naidu S; Noguchi Y; Hunt RM; Brighton CT
    Clin Orthop Relat Res; 1994 Sep; (306):222-9. PubMed ID: 8070200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subcellular regulation of the ionized calcium pool in isolated growth-plate chondrocytes.
    Iannotti JP; Brighton CT; Stambough JE
    Clin Orthop Relat Res; 1989 May; (242):285-93. PubMed ID: 2706859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium transport mechanism in molting crayfish revealed by microanalysis.
    Mizuhira V; Ueno M
    J Histochem Cytochem; 1983 Jan; 31(1A Suppl):214-8. PubMed ID: 6131091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Primary culture of rat growth plate chondrocytes: an in vitro model of growth plate histotype, matrix vesicle biogenesis and mineralization.
    Garimella R; Bi X; Camacho N; Sipe JB; Anderson HC
    Bone; 2004 Jun; 34(6):961-70. PubMed ID: 15193542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mineralization of human aortas with coarctation: quantitative electron probe microanalysis.
    Krefting ER; Röhrig T; Bröcker W; Anyanwu E; Schlake W; Dittrich H; Höhling HJ
    Scan Electron Microsc; 1982; (Pt 4):1617-28. PubMed ID: 7184143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the mineralization process in cultures of rabbit growth plate chondrocytes.
    Jikko A; Aoba T; Murakami H; Takano Y; Iwamoto M; Kato Y
    Dev Biol; 1993 Apr; 156(2):372-80. PubMed ID: 8462737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron and ion microprobe analysis of calcium distribution and transport in coral tissues.
    Marshall AT; Clode PL; Russell R; Prince K; Stern R
    J Exp Biol; 2007 Jul; 210(Pt 14):2453-63. PubMed ID: 17601949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.