These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 831795)
41. On the mechanism of shrinkage-induced potassium influx in rat and human erythrocytes. Orlov SN; Pokudin NI; Gurlo TG; Okun IM; Aksentsev SL; Konev SV Gen Physiol Biophys; 1991 Aug; 10(4):359-71. PubMed ID: 1663056 [TBL] [Abstract][Full Text] [Related]
42. The effect of intracellular calcium on the sodium pump of human red cells. Brown AM; Lew VL J Physiol; 1983 Oct; 343():455-93. PubMed ID: 6315922 [TBL] [Abstract][Full Text] [Related]
43. Internal magnesium, 2,3-diphosphoglycerate, and the regulation of the steady-state volume of human red blood cells by the Na/K/2Cl cotransport system. Mairbäurl H; Hoffman JF J Gen Physiol; 1992 May; 99(5):721-46. PubMed ID: 1607852 [TBL] [Abstract][Full Text] [Related]
44. Lithium transport pathways in human red blood cells. Pandey GN; Sarkadi B; Haas M; Gunn RB; Davis JM; Tosteson DC J Gen Physiol; 1978 Aug; 72(2):233-47. PubMed ID: 690597 [TBL] [Abstract][Full Text] [Related]
45. Effect of ouabain on the breakdown of adenine nucleotides in glucose-depleted nucleated red blood cells. Characterization of ATPase. Kaloyianni M; Tsikriktsi O; Tsianopoulou P Gen Physiol Biophys; 1998 Jun; 17(2):143-56. PubMed ID: 9785102 [TBL] [Abstract][Full Text] [Related]
46. The effect of external sodium on ouabain-insensitive K influx in fresh human red blood cells. Pfliegler G; Kelemen E; Szabó B Acta Biochim Biophys Acad Sci Hung; 1984; 19(3-4):281-8. PubMed ID: 6545635 [TBL] [Abstract][Full Text] [Related]
47. Effect of oxalate and malonate on red cell metabolism. Beutler E; Forman L; West C Blood; 1987 Nov; 70(5):1389-93. PubMed ID: 2822172 [TBL] [Abstract][Full Text] [Related]
48. Organic phosphate binding to hemoglobin in intact human erythrocytes determined by 31P nuclear magnetic resonance spectroscopy. Marshall WE; Costello AJ; Henderson TO; Omachi A Biochim Biophys Acta; 1977 Feb; 490(2):290-300. PubMed ID: 13855 [TBL] [Abstract][Full Text] [Related]
49. A change in the internal affinity of LK goat red-cell sodium pumps induced by high pH. Ellory JC; Maher P Biochim Biophys Acta; 1977 Nov; 471(1):111-7. PubMed ID: 21689 [TBL] [Abstract][Full Text] [Related]
50. Passive rubidium fluxes mediated by Na-K-ATPase reconstituted into phospholipid vesicles when ATP- and phosphate-free. Karlish SJ; Stein WD J Physiol; 1982 Jul; 328():295-316. PubMed ID: 6290646 [TBL] [Abstract][Full Text] [Related]
51. Potassium activated phosphatase from human red blood cells. The effects of p-nitrophenylphosphate on carbon fluxes. Garrahan PJ; Rega AF J Physiol; 1972 Jun; 223(2):595-617. PubMed ID: 4339052 [TBL] [Abstract][Full Text] [Related]
52. Intracellular sodium, potassium and magnesium concentration, ouabain-sensitive 86rubidium-uptake and sodium-efflux and Na+, K+-cotransport activity in erythrocytes of normal male subjects studied on two occasions. Lijnen P; Hespel P; Lommelen G; Laermans M; M'Buyamba-Kabangu JR; Amery A Methods Find Exp Clin Pharmacol; 1986 Sep; 8(9):525-33. PubMed ID: 3773597 [TBL] [Abstract][Full Text] [Related]
53. Alkali ion transport of primycin modified erythrocytes. Blaskó K; Györgyi S Acta Biol Med Ger; 1981; 40(4-5):465-9. PubMed ID: 7315092 [TBL] [Abstract][Full Text] [Related]
54. Anion-coupled Na efflux mediated by the human red blood cell Na/K pump. Dissing S; Hoffman JF J Gen Physiol; 1990 Jul; 96(1):167-93. PubMed ID: 2212979 [TBL] [Abstract][Full Text] [Related]
55. [Potassium ion transport in the erythrocytes of the frog Rana ridibunda]. Agalakova NI; Lapin AV; Gusev GP Zh Evol Biokhim Fiziol; 1995; 31(2):161-9. PubMed ID: 7483911 [TBL] [Abstract][Full Text] [Related]
56. The interaction of monovalent cations with the sodium pump of low-potassium goat erythrocytes. Cavieres JD; Ellory JC J Physiol; 1977 Sep; 271(1):289-318. PubMed ID: 144181 [TBL] [Abstract][Full Text] [Related]
57. Inhibition of human red cell sodium and potassium transport by divalent cations. Ellory JC; Flatman PW; Stewart GW J Physiol; 1983 Jul; 340():1-17. PubMed ID: 6887042 [TBL] [Abstract][Full Text] [Related]
58. Mechanism of alteration of sodium potassium pump of erythrocytes from patients with chronic renal failure. Cheng JT; Kahn T; Kaji DM J Clin Invest; 1984 Nov; 74(5):1811-20. PubMed ID: 6094614 [TBL] [Abstract][Full Text] [Related]
59. Organization of enzymes of glycolysis and of glutathione metabolism in human red cell membranes. Tillman W; Cordua A; Schröter W Biochim Biophys Acta; 1975 Mar; 382(2):157-71. PubMed ID: 164242 [TBL] [Abstract][Full Text] [Related]
60. Theoretical analysis of red cell metabolism and its interaction with membrane transport. Heinrich R Prog Clin Biol Res; 1989; 319():155-73; discussion 174-7. PubMed ID: 2560196 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]