These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 831795)
61. [Potassium transport in erythrocytes from patients with gentamicin intolerance]. Toropova FV; Smirnov AIu; Smirnova OI; Marakhova II Tsitologiia; 2002; 44(12):1194-8. PubMed ID: 12683330 [TBL] [Abstract][Full Text] [Related]
62. [Study of the interaction of Na+ and K+-ATPase of erythrocytes with ouabain. Effect of acetyl phosphate and p-nitrophenyl phosphate]. Kolchinskaia LI; Lishko VK; Malysheva MK Biokhimiia; 1976 May; 41(5):933-8. PubMed ID: 139945 [TBL] [Abstract][Full Text] [Related]
63. [Na/K transport in red blood cells from normal subjects: methodological problems (author's transl)]. Borghi L; Canali M; Curti A; Montanari A; Perinotto P; Novarini A Ateneo Parmense Acta Biomed; 1980; 51(1):23-31. PubMed ID: 7470177 [TBL] [Abstract][Full Text] [Related]
64. [Na/K transport in red blood cells from severely burned patients (author's transl)]. Borghetti A; Borghi L; Canali M; Curti A; Montanari A; Perinotto P; Nouvenne R; Zermani R; Novarini A Ateneo Parmense Acta Biomed; 1980; 51(1):5-10. PubMed ID: 7470181 [TBL] [Abstract][Full Text] [Related]
65. Several cation transporters and volume regulation in high-K dog red blood cells. Fujise H; Yamada I; Masuda M; Miyazawa Y; Ogawa E; Takahashi R Am J Physiol; 1991 Mar; 260(3 Pt 1):C589-97. PubMed ID: 1848403 [TBL] [Abstract][Full Text] [Related]
66. The alteration by ouabain of calcium movements in human red cell ghosts. Isern M; Romero PJ J Physiol; 1977 Jan; 264(2):411-28. PubMed ID: 839460 [TBL] [Abstract][Full Text] [Related]
67. Effect of membrane potential and internal pH on active sodium-potassium transport and on ATP content in high-potassium sheep erythrocytes. Zade-Oppen AM; Schooler JM; Cook P; Tosteson DC Biochim Biophys Acta; 1979 Aug; 555(2):285-98. PubMed ID: 38843 [TBL] [Abstract][Full Text] [Related]
68. pH dependence of rubidium influx in human red blood cells. Beaugé LA; Adragna N Biochim Biophys Acta; 1974 Jun; 352(3):441-7. PubMed ID: 4841674 [No Abstract] [Full Text] [Related]
69. A 31P NMR study of phosphoenolpyruvate transport across the human erythrocyte membrane. Hamasaki N; Wyrwicz AM; Lubansky JH; Omachi A Biochem Biophys Res Commun; 1981 May; 100(2):879-87. PubMed ID: 7271786 [No Abstract] [Full Text] [Related]
70. Energy metabolism in human erythrocytes: the role of phosphoglycerate kinase in cation transport. Segel GB; Feig SA; Glader BE; Muller A; Dutcher P; Nathan DG Blood; 1975 Aug; 46(2):271-8. PubMed ID: 166715 [TBL] [Abstract][Full Text] [Related]
71. Isolation and partial characterization of monophosphoglycerate mutase from human erythrocytes. Sheibley RH; Hass LF J Biol Chem; 1976 Nov; 251(21):6699-704. PubMed ID: 10303 [TBL] [Abstract][Full Text] [Related]
72. Factors influencing Na+ transport in dog red cells. Elford BC; Solomon AK Biochim Biophys Acta; 1974 Dec; 373(2):253-64. PubMed ID: 4429735 [No Abstract] [Full Text] [Related]
73. Metabolic impairment and membrane abnormality in red cells from Huntington's disease. Zanella A; Izzo C; Meola G; Mariani M; Colotti MT; Silani V; Pellegata G; Scarlato G J Neurol Sci; 1980 Jul; 47(1):93-103. PubMed ID: 6447771 [TBL] [Abstract][Full Text] [Related]
74. Mechanism of inhibition of glycolysis by vanadate. Benabe JE; Echegoyen LA; Pastrana B; Martínez-Maldonado M J Biol Chem; 1987 Jul; 262(20):9555-60. PubMed ID: 3036865 [TBL] [Abstract][Full Text] [Related]
75. A reappraisal of 31P NMR studies indicating enzyme complexation in red blood cells. Momsen G; Rose ZB; Gupta RK Biochem Biophys Res Commun; 1979 Nov; 91(2):651-7. PubMed ID: 229854 [No Abstract] [Full Text] [Related]
76. Effects of semicarbazide on oxidative processes in human red blood cell membranes. Verweij H; van Steveninck J Biochim Biophys Acta; 1980 Nov; 602(3):591-9. PubMed ID: 7437422 [TBL] [Abstract][Full Text] [Related]
77. 2,3-Bisphosphoglycerate inhibits the transport of phosphoenolpyruvate across the erythrocyte membrane. Hamasaki N Biochem Biophys Res Commun; 1984 Jul; 122(2):609-12. PubMed ID: 6466329 [TBL] [Abstract][Full Text] [Related]
78. Rubidium and sodium transport across erythrocyte membrane: alterations due to a circulating factor. Martín Vasallo P; García Pérez J; Getino MA; Marrero F; Battaner E Life Sci; 1985 Sep; 37(9):835-40. PubMed ID: 4033358 [TBL] [Abstract][Full Text] [Related]
79. Rubidium transport in human erythrocyte suspensions monitored by 87Rb NMR with aqueous chemical shift reagents. Helpern JA; Welch KM; Halvorson HR NMR Biomed; 1989 Jul; 2(2):47-54. PubMed ID: 2518154 [TBL] [Abstract][Full Text] [Related]
80. A high affinity site for sugar transport at the inner face of the human erythrocyte membrane? Foster DM; Jacquez JA; Lieb WR; Stein WD Biochim Biophys Acta; 1979 Aug; 555(2):349-51. PubMed ID: 476109 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]