These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 831830)

  • 1. A simple method for calculating Km and V from a single enzyme reaction progress curve.
    Yun SL; Suelter CH
    Biochim Biophys Acta; 1977 Jan; 480(1):1-13. PubMed ID: 831830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the estimation errors of K
    Stroberg W; Schnell S
    Biophys Chem; 2016 Dec; 219():17-27. PubMed ID: 27677118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental designs for estimating the parameters of the Michaelis-Menten equation from progress curves of enzyme-catalyzed reactions.
    Duggleby RG; Clarke RB
    Biochim Biophys Acta; 1991 Nov; 1080(3):231-6. PubMed ID: 1954231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rigorous determination of the Hill coefficient of non-Michaelian substrate-inhibited enzymes.
    Bounias M
    Biochem Int; 1988 Jul; 17(1):147-54. PubMed ID: 3190712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Half-time analysis of the integrated Michaelis equation. Simulation and use of the half-time plot and its direct linear variant in the analysis of some alpha-chymotrypsin, papain- and fumarase-catalysed reactions.
    Wharton CW; Szawelski RJ
    Biochem J; 1982 May; 203(2):351-60. PubMed ID: 7115291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The 'double' Michaelis-Menten equation: estimation of parameters.
    Borstlap AC; Doucet PG
    Z Naturforsch C Biosci; 1983; 38(3-4):268-72. PubMed ID: 6868753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of systematic error on the accuracy of Michaelis constants and maximum velocities estimated by using the integrated Michaelis-Menten equation.
    Newman PF; Atkins GL; Nimmo IA
    Biochem J; 1974 Dec; 143(3):779-81. PubMed ID: 4462757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A semi-integrated method for the determination of enzyme kinetic parameters and graphical representation of the Michaelis-Menten equation.
    Naqui A; Chance B
    Anal Biochem; 1984 Aug; 141(1):179-83. PubMed ID: 6496926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The reliability of Michaelis constants and maximum velocities estimated by using the integrated Michaelis-Menten equation.
    Atkins GL; Nimmo IA
    Biochem J; 1973 Dec; 135(4):779-84. PubMed ID: 4778274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deviations from Michaelis-Menten kinetics. The possibility of complicated curves for simple kinetic schemes and the computer fitting of experimental data for acetylcholinesterase, acid phosphatase, adenosine deaminase, arylsulphatase, benzylamine oxidase, chymotrypsin, fumarase, galactose dehydrogenase, beta-galactosidase, lactate dehydrogenase, peroxidase and xanthine oxidase.
    Bardsley WG; Leff P; Kavanagh J; Waight RD
    Biochem J; 1980 Jun; 187(3):739-65. PubMed ID: 6821369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Evaluation of kinetic parameters of unpurified enzymic systems, method for measuring the concentration of endogenous substrate].
    Potapov AP
    Biofizika; 1981; 26(3):434-6. PubMed ID: 7260154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The comparison of the estimation of enzyme kinetic parameters by fitting reaction curve to the integrated Michaelis-Menten rate equations of different predictor variables.
    Liao F; Zhu XY; Wang YM; Zuo YP
    J Biochem Biophys Methods; 2005 Jan; 62(1):13-24. PubMed ID: 15656940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exponential function for calculating saturable enzyme kinetics.
    Keller F; Emde C; Schwarz A
    Clin Chem; 1988 Dec; 34(12):2486-9. PubMed ID: 3197288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exact and approximate solutions for the decades-old Michaelis-Menten equation: Progress-curve analysis through integrated rate equations.
    Goličnik M
    Biochem Mol Biol Educ; 2011; 39(2):117-25. PubMed ID: 21445903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of the direct linear plot for determining initial velocities.
    Cornish-Bowden A
    Biochem J; 1975 Aug; 149(2):305-12. PubMed ID: 1180900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the best-fit values of kinetic parameters of the Michaelis-Menten equation by the method of least squares with the Taylor expansion.
    Sakoda M; Hiromi K
    J Biochem; 1976 Sep; 80(3):547-55. PubMed ID: 977553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sigmoidal substrate saturation curves in Michaelis-Menten mechanism as an artefact.
    Fischer E; Keleti T
    Acta Biochim Biophys Acad Sci Hung; 1975; 10(3):221-7. PubMed ID: 1211106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On a nonelementary progress curve equation and its application in enzyme kinetics.
    Golicnik M
    J Chem Inf Comput Sci; 2002; 42(2):157-61. PubMed ID: 11911683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of the F test for determining the degree of enzyme-kinetic and ligand-binding data. A Monte Carlo simulation study.
    Burguillo FJ; Wright AJ; Bardsley WG
    Biochem J; 1983 Apr; 211(1):23-34. PubMed ID: 6870821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progress curve analysis for enzyme and microbial kinetic reactions using explicit solutions based on the Lambert W function.
    Goudar CT; Harris SK; McInerney MJ; Suflita JM
    J Microbiol Methods; 2004 Dec; 59(3):317-26. PubMed ID: 15488275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.