These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 831855)

  • 1. Steady-state electrodiffusion. Scaling, exact solution for ions of one charge, and the phase plane.
    Leuchtag HR; Swihart JC
    Biophys J; 1977 Jan; 17(1):27-46. PubMed ID: 831855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrodiffusion of ions approaching the mouth of a conducting membrane channel.
    Peskoff A; Bers DM
    Biophys J; 1988 Jun; 53(6):863-75. PubMed ID: 2456103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic theory model for ion movement through biological membranes. 3. Steady-state electrical properties with solution asymmetry.
    Mackey MC; McNeel ML
    Biophys J; 1971 Aug; 11(8):664-74. PubMed ID: 5116582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exact continuum solution for a channel that can be occupied by two ions.
    Levitt DG
    Biophys J; 1987 Sep; 52(3):455-66. PubMed ID: 2443193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model.
    Schuss Z; Nadler B; Eisenberg RS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036116. PubMed ID: 11580403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An exact constant-field solution for a simple membrane.
    Arndt RA; Bond JD; Roper LD
    Biophys J; 1970 Dec; 10(12):1149-53. PubMed ID: 5489778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoupling of the nernst-planck and poisson equations. Application to a membrane system at overlimiting currents.
    Urtenov MA; Kirillova EV; Seidova NM; Nikonenko VV
    J Phys Chem B; 2007 Dec; 111(51):14208-22. PubMed ID: 18052144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anomalous reactances in electrodiffusion systems.
    Sandblom J
    Biophys J; 1972 Sep; 12(9):1118-31. PubMed ID: 5056958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrodiffusion: a continuum modeling framework for biomolecular systems with realistic spatiotemporal resolution.
    Lu B; Zhou YC; Huber GA; Bond SD; Holst MJ; McCammon JA
    J Chem Phys; 2007 Oct; 127(13):135102. PubMed ID: 17919055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rate theory models for ion transport through rigid pores. III. Continuum vs discrete models in single file diffusion.
    Stephan W; Kleutsch B; Frehland E
    J Theor Biol; 1983 Nov; 105(2):287-310. PubMed ID: 6317988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic nanopores with fixed charges: an electrodiffusion model for ionic transport.
    Ramírez P; Mafé S; Aguilella VM; Alcaraz A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 1):011910. PubMed ID: 12935179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrodiffusion kinetics of ionic transport in a simple membrane channel.
    Valent I; Petrovič P; Neogrády P; Schreiber I; Marek M
    J Phys Chem B; 2013 Nov; 117(46):14283-93. PubMed ID: 24164274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Derivation of unstirred-layer transport number equations from the Nernst-Planck flux equations.
    Barry PH
    Biophys J; 1998 Jun; 74(6):2903-5. PubMed ID: 9635743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Comparison of jumping and electrodiffusion mechanisms of particle movement in thin membranes. I. Statement of the problem. Stationary transfer].
    Aĭt'ian SKh; Markin VS; Malev VV
    Biofizika; 1976; 21(2):253-6. PubMed ID: 1268271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A universal steady state I-V relationship for membrane current.
    Chernyak YB
    IEEE Trans Biomed Eng; 1995 Dec; 42(12):1145-57. PubMed ID: 8550056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical solution of steady-state electrodiffusion equations for a simple membrane.
    Arndt RA; Bond JD; Roper LD
    Biophys J; 1971 Mar; 11(3):265-80. PubMed ID: 5573369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A network thermodynamic method for numerical solution of the Nernst-Planck and Poisson equation system with application to ionic transport through membranes.
    Horno J; González-Caballero F; González-Fernández CF
    Eur Biophys J; 1990; 17(6):307-13. PubMed ID: 2307138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method to relate steady-state ionic currents, conductances, and membrane potential in ion exchange membranes with unknown thermodynamic properties.
    Sandblom JP
    Biophys J; 1967 May; 7(3):243-65. PubMed ID: 6035123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic theory model for ion movement through biological membranes. II. Interionic selectivity.
    Mackey MC
    Biophys J; 1971 Jan; 11(1):91-7. PubMed ID: 5539002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interpretation of steady-state current-voltage curves: consequences and implications of current subtraction in transport studies.
    Blatt MR
    J Membr Biol; 1986; 92(1):91-110. PubMed ID: 3746894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.