BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 8318669)

  • 1. Probing the influence of sequence-dependent interactions upon alpha-helix stability in alanine-based linear peptides.
    Jacchieri SG; Richards NG
    Biopolymers; 1993 Jun; 33(6):971-84. PubMed ID: 8318669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free energy determinants of secondary structure formation: I. alpha-Helices.
    Yang AS; Honig B
    J Mol Biol; 1995 Sep; 252(3):351-65. PubMed ID: 7563056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of main-chain electrostatics, hydrophobic effect and side-chain conformational entropy in determining the secondary structure of proteins.
    Avbelj F; Fele L
    J Mol Biol; 1998 Jun; 279(3):665-84. PubMed ID: 9641985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of folding and unfolding mechanisms in alanine-based alpha-helical polypeptides.
    Morozov AN; Lin SH
    J Phys Chem B; 2006 Oct; 110(41):20555-61. PubMed ID: 17034243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laser temperature jump study of the helix<==>coil kinetics of an alanine peptide interpreted with a 'kinetic zipper' model.
    Thompson PA; Eaton WA; Hofrichter J
    Biochemistry; 1997 Jul; 36(30):9200-10. PubMed ID: 9230053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins.
    Avbelj F
    J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical reasons for secondary structure stability: alpha-helices in short peptides.
    Finkelstein AV; Badretdinov AY; Ptitsyn OB
    Proteins; 1991; 10(4):287-99. PubMed ID: 1946339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Addition of side chain interactions to modified Lifson-Roig helix-coil theory: application to energetics of phenylalanine-methionine interactions.
    Stapley BJ; Rohl CA; Doig AJ
    Protein Sci; 1995 Nov; 4(11):2383-91. PubMed ID: 8563636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of the multiple sequence approximation within the AGADIR model of alpha-helix formation: comparison with Zimm-Bragg and Lifson-Roig formalisms.
    Muñoz V; Serrano L
    Biopolymers; 1997 Apr; 41(5):495-509. PubMed ID: 9095674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alpha helix capping in synthetic model peptides by reciprocal side chain-main chain interactions: evidence for an N terminal "capping box".
    Zhou HX; Lyu P; Wemmer DE; Kallenbach NR
    Proteins; 1994 Jan; 18(1):1-7. PubMed ID: 8146119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short alanine-based peptides may form 3(10)-helices and not alpha-helices in aqueous solution.
    Miick SM; Martinez GV; Fiori WR; Todd AP; Millhauser GL
    Nature; 1992 Oct; 359(6396):653-5. PubMed ID: 1328890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energetics of polar side-chain interactions in helical peptides: salt effects on ion pairs and hydrogen bonds.
    Smith JS; Scholtz JM
    Biochemistry; 1998 Jan; 37(1):33-40. PubMed ID: 9425023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural cassette mutagenesis in a de novo designed protein: proof of a novel concept for examining protein folding and stability.
    Kwok SC; Tripet B; Man JH; Chana MS; Lavigne P; Mant CT; Hodges RS
    Biopolymers; 1998; 47(1):101-23. PubMed ID: 9692331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Examination of the folding of a short alanine-based helical peptide with salt bridges using molecular dynamics simulation.
    Wang WZ; Lin T; Sun YC
    J Phys Chem B; 2007 Apr; 111(13):3508-14. PubMed ID: 17388513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of lysine content and pH on the stability of alanine-based copolypeptides.
    Vila JA; Ripoll DR; Scheraga HA
    Biopolymers; 2001 Mar; 58(3):235-46. PubMed ID: 11169384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Position dependence of non-polar amino acid intrinsic helical propensities.
    Petukhov M; Muñoz V; Yumoto N; Yoshikawa S; Serrano L
    J Mol Biol; 1998 Apr; 278(1):279-89. PubMed ID: 9571050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [A turning point in the knowledge of the structure-function-activity relations of elastin].
    Alix AJ
    J Soc Biol; 2001; 195(2):181-93. PubMed ID: 11727705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing helix formation in unsolvated peptides.
    Breaux GA; Jarrold MF
    J Am Chem Soc; 2003 Sep; 125(35):10740-7. PubMed ID: 12940760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parameters of helix-coil transition theory for alanine-based peptides of varying chain lengths in water.
    Scholtz JM; Qian H; York EJ; Stewart JM; Baldwin RL
    Biopolymers; 1991 Nov; 31(13):1463-70. PubMed ID: 1814498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic model of secondary structure for alpha-helical peptides and proteins.
    Lomize AL; Mosberg HI
    Biopolymers; 1997 Aug; 42(2):239-69. PubMed ID: 9235002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.