BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 8318724)

  • 1. Impact of freeze substitution on biological electron microscopy.
    Hippe-Sanwald S
    Microsc Res Tech; 1993 Apr; 24(5):400-22. PubMed ID: 8318724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryopreparation of biological specimens for immunoelectron microscopy.
    Möbius W
    Ann Anat; 2009 Jun; 191(3):231-47. PubMed ID: 19264467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High pressure freezing, electron microscopy, and immuno-electron microscopy of Tetrahymena thermophila basal bodies.
    Meehl JB; Giddings TH; Winey M
    Methods Mol Biol; 2009; 586():227-41. PubMed ID: 19768433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunoelectron microscopy of cryofixed and freeze-substituted plant tissues.
    Takeuchi M; Takabe K; Mineyuki Y
    Methods Mol Biol; 2010; 657():155-65. PubMed ID: 20602214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-pressure freezing, chemical fixation and freeze-substitution for immuno-electron microscopy.
    Mühlfeld C
    Methods Mol Biol; 2010; 611():87-101. PubMed ID: 19960324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave energy fixation of plant tissue: an alternative approach that provides excellent preservation of ultrastructure and antigenicity.
    Benhamou N; Noel S; Grenier J; Asselin A
    J Electron Microsc Tech; 1991 Jan; 17(1):81-94. PubMed ID: 1993940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preservation and immunogold localization of lipids by freeze-substitution and low temperature embedding.
    Voorhout W; van Genderen I; van Meer G; Geuze H
    Scanning Microsc Suppl; 1991; 5(4):S17-24; discussion S24-5. PubMed ID: 1822021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Freeze-substitution for thin-section study of biological specimens.
    Ichikawa A; Ichikawa M; Sasaki K
    J Electron Microsc (Tokyo); 1989; 38 Suppl():S118-22. PubMed ID: 2809468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrastructure of hyaline cartilage. I. A comparative study of cartilage from different species and locations, using cryofixation, freeze-substitution and low-temperature embedding techniques.
    Engfeldt B; Hultenby K; Müller M
    Acta Pathol Microbiol Immunol Scand A; 1986 Sep; 94(5):313-23. PubMed ID: 3532690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic force microscopy applied to study macromolecular content of embedded biological material.
    Matsko NB
    Ultramicroscopy; 2007; 107(2-3):95-105. PubMed ID: 16875783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ localization of cartilage extracellular matrix components by immunoelectron microscopy after cryotechnical tissue processing.
    Hunziker EB; Herrmann W
    J Histochem Cytochem; 1987 Jun; 35(6):647-55. PubMed ID: 3553318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transmission electron microscopy of the bacterial nucleoid.
    Eltsov M; Zuber B
    J Struct Biol; 2006 Nov; 156(2):246-54. PubMed ID: 16978880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Freeze-drying and related preparation techniques for biological microprobe analysis.
    Wróblewski R; Wróblewski J; Anniko M; Edström L
    Scan Electron Microsc; 1985; (Pt 1):447-54. PubMed ID: 4001862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advantages of fast-freeze fixation followed by freeze-substitution for the preservation of cell integrity.
    Nicolas G
    J Electron Microsc Tech; 1991 Aug; 18(4):395-405. PubMed ID: 1919792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study of freeze-substitution techniques for X-ray microanalysis of biological tissue.
    Pålsgård E; Lindh U; Roomans GM
    Microsc Res Tech; 1994 Jun; 28(3):254-8. PubMed ID: 8068987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epoxy resin as fixative during freeze-substitution.
    Matsko N; Mueller M
    J Struct Biol; 2005 Nov; 152(2):92-103. PubMed ID: 16214372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pre-fixation of virulent Mycobacterium tuberculosis with glutaraldehyde preserves exquisite ultrastructure on transmission electron microscopy through cryofixation and freeze-substitution with osmium-acetone at ultralow temperature.
    Yamada H; Chikamatsu K; Aono A; Mitarai S
    J Microbiol Methods; 2014 Jan; 96():50-5. PubMed ID: 24200708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved preservation of cartilage extracellular matrix by freeze dried embedding.
    Arsenault AL; Spitzer E; Simon GT
    J Microsc; 1987 Mar; 145(Pt 3):357-60. PubMed ID: 3585997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cryofixation of basement membranes followed by freeze substitution or freeze drying demonstrates that they are composed of a tridimensional network of irregular cords.
    Chan FL; Inoue S; Leblond CP
    Anat Rec; 1993 Feb; 235(2):191-205. PubMed ID: 8420389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved preservation of fine structure of deep-sea microorganisms by freeze-substitution after glutaraldehyde fixation.
    Yamaguchi M; Namiki Y; Okada H; Uematsu K; Tame A; Maruyama T; Kozuka Y
    J Electron Microsc (Tokyo); 2011; 60(4):283-7. PubMed ID: 21571752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.