BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 8318888)

  • 1. Site-directed mutagenesis of Klebsiella aerogenes urease: identification of histidine residues that appear to function in nickel ligation, substrate binding, and catalysis.
    Park IS; Hausinger RP
    Protein Sci; 1993 Jun; 2(6):1034-41. PubMed ID: 8318888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structures of the Klebsiella aerogenes urease apoenzyme and two active-site mutants.
    Jabri E; Karplus PA
    Biochemistry; 1996 Aug; 35(33):10616-26. PubMed ID: 8718850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structures of Cys319 variants and acetohydroxamate-inhibited Klebsiella aerogenes urease.
    Pearson MA; Michel LO; Hausinger RP; Karplus PA
    Biochemistry; 1997 Jul; 36(26):8164-72. PubMed ID: 9201965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The crystal structure of urease from Klebsiella aerogenes.
    Jabri E; Carr MB; Hausinger RP; Karplus PA
    Science; 1995 May; 268(5213):998-1004. PubMed ID: 7754395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-directed mutagenesis of the active site cysteine in Klebsiella aerogenes urease.
    Martin PR; Hausinger RP
    J Biol Chem; 1992 Oct; 267(28):20024-7. PubMed ID: 1400317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification, characterization, and functional analysis of a truncated Klebsiella aerogenes UreE urease accessory protein lacking the histidine-rich carboxyl terminus.
    Brayman TG; Hausinger RP
    J Bacteriol; 1996 Sep; 178(18):5410-6. PubMed ID: 8808929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of active site residues essential to 4-chlorobenzoyl-coenzyme A dehalogenase catalysis by chemical modification and site directed mutagenesis.
    Yang G; Liu RQ; Taylor KL; Xiang H; Price J; Dunaway-Mariano D
    Biochemistry; 1996 Aug; 35(33):10879-85. PubMed ID: 8718880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of aspartate-133 and histidine-458 in the mechanism of tryptophan indole-lyase from Proteus vulgaris.
    Demidkina TV; Zakomirdina LN; Kulikova VV; Dementieva IS; Faleev NG; Ronda L; Mozzarelli A; Gollnick PD; Phillips RS
    Biochemistry; 2003 Sep; 42(38):11161-9. PubMed ID: 14503866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of metal-binding residues in the Klebsiella aerogenes urease nickel metallochaperone, UreE.
    Colpas GJ; Brayman TG; Ming LJ; Hausinger RP
    Biochemistry; 1999 Mar; 38(13):4078-88. PubMed ID: 10194322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Partial characterization of the active site human platelet cAMP phosphodiesterase, PDE3A, by site-directed mutagenesis.
    Cheung PP; Yu L; Zhang H; Colman RW
    Arch Biochem Biophys; 1998 Dec; 360(1):99-104. PubMed ID: 9826434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diethylpyrocarbonate reactivity of Klebsiella aerogenes urease: effect of pH and active site ligands on the rate of inactivation.
    Park IS; Hausinger RP
    J Protein Chem; 1993 Feb; 12(1):51-6. PubMed ID: 8427633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the catalytic role of the conserved active site residue His466 of choline oxidase.
    Ghanem M; Gadda G
    Biochemistry; 2005 Jan; 44(3):893-904. PubMed ID: 15654745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-directed mutagenesis of active site residues of phosphite dehydrogenase.
    Woodyer R; Wheatley JL; Relyea HA; Rimkus S; van der Donk WA
    Biochemistry; 2005 Mar; 44(12):4765-74. PubMed ID: 15779903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic and structural characterization of urease active site variants.
    Pearson MA; Park IS; Schaller RA; Michel LO; Karplus PA; Hausinger RP
    Biochemistry; 2000 Jul; 39(29):8575-84. PubMed ID: 10913264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zn2+-linked dimerization of UreG from Helicobacter pylori, a chaperone involved in nickel trafficking and urease activation.
    Zambelli B; Turano P; Musiani F; Neyroz P; Ciurli S
    Proteins; 2009 Jan; 74(1):222-39. PubMed ID: 18767150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The nickel site of Bacillus pasteurii UreE, a urease metallo-chaperone, as revealed by metal-binding studies and X-ray absorption spectroscopy.
    Stola M; Musiani F; Mangani S; Turano P; Safarov N; Zambelli B; Ciurli S
    Biochemistry; 2006 May; 45(20):6495-509. PubMed ID: 16700560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heparinase I from Flavobacterium heparinum. Identification of a critical histidine residue essential for catalysis as probed by chemical modification and site-directed mutagenesis.
    Godavarti R; Cooney CL; Langer R; Sasisekharan R
    Biochemistry; 1996 May; 35(21):6846-52. PubMed ID: 8639636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-directed mutagenesis of histidine-90 in Escherichia coli L-threonine dehydrogenase alters its substrate specificity.
    Johnson AR; Dekker EE
    Arch Biochem Biophys; 1998 Mar; 351(1):8-16. PubMed ID: 9500838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rabbit muscle creatine kinase: consequences of the mutagenesis of conserved histidine residues.
    Chen LH; Borders CL; Vásquez JR; Kenyon GL
    Biochemistry; 1996 Jun; 35(24):7895-902. PubMed ID: 8672491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence supporting a role for histidine-235 in cation binding to human 3-hydroxy-3-methyglutaryl-CoA lyase.
    Roberts JR; Miziorko HM
    Biochemistry; 1997 Jun; 36(24):7594-600. PubMed ID: 9200711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.