BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 8319803)

  • 1. Role of the carboxy terminal region of beta tubulin on microtubule dynamics through its interaction with the GTP phosphate binding region.
    Padilla R; López Otin C; Serrano L; Avila J
    FEBS Lett; 1993 Jul; 325(3):173-6. PubMed ID: 8319803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphate release during microtubule assembly: what stabilizes growing microtubules?
    Vandecandelaere A; Brune M; Webb MR; Martin SR; Bayley PM
    Biochemistry; 1999 Jun; 38(25):8179-88. PubMed ID: 10387063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deoxyguanosine nucleotide analogues: potent stimulators of microtubule nucleation with reduced affinity for the exchangeable nucleotide site of tubulin.
    Hamel E; Lustbader J; Lin CM
    Biochemistry; 1984 Oct; 23(22):5314-25. PubMed ID: 6509023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of GTP and Pi in wild-type and mutated yeast microtubules: implications for the role of the GTP/GDP-Pi cap in microtubule dynamics.
    Dougherty CA; Himes RH; Wilson L; Farrell KW
    Biochemistry; 1998 Aug; 37(31):10861-5. PubMed ID: 9692978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concerning the chemical nature of tubulin subunits that cap and stabilize microtubules.
    Caplow M; Fee L
    Biochemistry; 2003 Feb; 42(7):2122-6. PubMed ID: 12590601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The microtubule-associated protein tau cross-links to two distinct sites on each alpha and beta tubulin monomer via separate domains.
    Chau MF; Radeke MJ; de Inés C; Barasoain I; Kohlstaedt LA; Feinstein SC
    Biochemistry; 1998 Dec; 37(51):17692-703. PubMed ID: 9922135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microtubule elongation and guanosine 5'-triphosphate hydrolysis. Role of guanine nucleotides in microtubule dynamics.
    Carlier MF; Didry D; Pantaloni D
    Biochemistry; 1987 Jul; 26(14):4428-37. PubMed ID: 3663597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microtubule dynamics modulated by guanosine triphosphate hydrolysis activity of beta-tubulin.
    Davis A; Sage CR; Dougherty CA; Farrell KW
    Science; 1994 May; 264(5160):839-42. PubMed ID: 8171338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of GTP hydrolysis in tubulin polymerization: characterization of the kinetic intermediate microtubule-GDP-Pi using phosphate analogues.
    Carlier MF; Didry D; Simon C; Pantaloni D
    Biochemistry; 1989 Feb; 28(4):1783-91. PubMed ID: 2719934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-directed mutagenesis of putative GTP-binding sites of yeast beta-tubulin: evidence that alpha-, beta-, and gamma-tubulins are atypical GTPases.
    Sage CR; Dougherty CA; Davis AS; Burns RG; Wilson L; Farrell KW
    Biochemistry; 1995 Jun; 34(22):7409-19. PubMed ID: 7779783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of GTP hydrolysis in microtubule polymerization: evidence for a coupled hydrolysis mechanism.
    Stewart RJ; Farrell KW; Wilson L
    Biochemistry; 1990 Jul; 29(27):6489-98. PubMed ID: 2207090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The magnesium-GTP interaction in microtubule assembly.
    Grover S; Hamel E
    Eur J Biochem; 1994 May; 222(1):163-72. PubMed ID: 8200341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A putative beta-tubulin phosphate-binding motif is involved in lateral microtubule protofilament interactions.
    Pérez M; Aloria K; Zabala JC; Avila J
    Eur J Biochem; 1997 Sep; 248(3):840-7. PubMed ID: 9342237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of microtubule elongation by GDP.
    Bayley PM; Martin SR
    Biochem Biophys Res Commun; 1986 May; 137(1):351-8. PubMed ID: 3718509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directed elongation model for microtubule GTP hydrolysis.
    Caplow M; Reid R
    Proc Natl Acad Sci U S A; 1985 May; 82(10):3267-71. PubMed ID: 3858823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equilibrium studies of a fluorescent paclitaxel derivative binding to microtubules.
    Li Y; Edsall R; Jagtap PG; Kingston DG; Bane S
    Biochemistry; 2000 Jan; 39(3):616-23. PubMed ID: 10642187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reexamination of the role of nonhydrolyzable guanosine 5'-triphosphate analogues in tubulin polymerization: reaction conditions are a critical factor for effective interactions at the exchangeable nucleotide site.
    Hamel E; Lin CM
    Biochemistry; 1990 Mar; 29(11):2720-9. PubMed ID: 2346744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembly of microtubules from tubulin bearing the nonhydrolyzable guanosine triphosphate analogue GMPPCP [guanylyl 5'-(beta, gamma-methylenediphosphonate)]: variability of growth rates and the hydrolysis of GTP.
    Dye RB; Williams RC
    Biochemistry; 1996 Nov; 35(45):14331-9. PubMed ID: 8916920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP.
    Hyman AA; Salser S; Drechsel DN; Unwin N; Mitchison TJ
    Mol Biol Cell; 1992 Oct; 3(10):1155-67. PubMed ID: 1421572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interrelationships of tubulin-GDP and tubulin-GTP in microtubule assembly.
    Lin CM; Hamel E
    Biochemistry; 1987 Nov; 26(22):7173-82. PubMed ID: 3427067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.