These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 8319885)
1. An operator binding-negative mutation of Xyl repressor from Bacillus subtilis is trans dominant in Bacillus megaterium. Kauder C; Allmansberger R; Gärtner D; Schmiedel D; Hillen W FEMS Microbiol Lett; 1993 May; 109(1):81-4. PubMed ID: 8319885 [TBL] [Abstract][Full Text] [Related]
2. Regulation of the Bacillus subtilis W23 xylose utilization operon: interaction of the Xyl repressor with the xyl operator and the inducer xylose. Gärtner D; Degenkolb J; Ripperger JA; Allmansberger R; Hillen W Mol Gen Genet; 1992 Apr; 232(3):415-22. PubMed ID: 1588910 [TBL] [Abstract][Full Text] [Related]
3. Molecular cloning, structure, promoters and regulatory elements for transcription of the Bacillus licheniformis encoded regulon for xylose utilization. Scheler A; Rygus T; Allmansberger R; Hillen W Arch Microbiol; 1991; 155(6):526-34. PubMed ID: 1953294 [TBL] [Abstract][Full Text] [Related]
4. Identification and sequence analysis of the Bacillus subtilis W23 xylR gene and xyl operator. Kreuzer P; Gärtner D; Allmansberger R; Hillen W J Bacteriol; 1989 Jul; 171(7):3840-5. PubMed ID: 2544559 [TBL] [Abstract][Full Text] [Related]
5. Molecular cloning, structure, promoters and regulatory elements for transcription of the Bacillus megaterium encoded regulon for xylose utilization. Rygus T; Scheler A; Allmansberger R; Hillen W Arch Microbiol; 1991; 155(6):535-42. PubMed ID: 1719948 [TBL] [Abstract][Full Text] [Related]
6. Transcription of the xyl operon is controlled in Bacillus subtilis by tandem overlapping operators spaced by four base-pairs. Dahl MK; Degenkolb J; Hillen W J Mol Biol; 1994 Oct; 243(3):413-24. PubMed ID: 7966270 [TBL] [Abstract][Full Text] [Related]
7. Catabolite repression of the xyl operon in Bacillus megaterium. Rygus T; Hillen W J Bacteriol; 1992 May; 174(9):3049-55. PubMed ID: 1569031 [TBL] [Abstract][Full Text] [Related]
8. Sequences of ccpA and two downstream Bacillus megaterium genes with homology to the motAB operon from Bacillus subtilis. Hueck C; Kraus A; Hillen W Gene; 1994 May; 143(1):147-8. PubMed ID: 8200532 [TBL] [Abstract][Full Text] [Related]
9. Regulated expression of heterologous genes in Bacillus subtilis using the Tn10 encoded tet regulatory elements. Geissendörfer M; Hillen W Appl Microbiol Biotechnol; 1990 Sep; 33(6):657-63. PubMed ID: 1369298 [TBL] [Abstract][Full Text] [Related]
10. Barbiturate-mediated regulation of expression of the cytochrome P450BM-3 gene of Bacillus megaterium by Bm3R1 protein. Shaw GC; Fulco AJ J Biol Chem; 1992 Mar; 267(8):5515-26. PubMed ID: 1544926 [TBL] [Abstract][Full Text] [Related]
11. Contributions of XylR CcpA and cre to diauxic growth of Bacillus megaterium and to xylose isomerase expression in the presence of glucose and xylose. Schmiedel D; Hillen W Mol Gen Genet; 1996 Feb; 250(3):259-66. PubMed ID: 8602140 [TBL] [Abstract][Full Text] [Related]
12. Regulation of xylose utilization in Bacillus licheniformis: Xyl repressor-xyl-operator interaction studied by DNA modification protection and interference. Scheler A; Hillen W Mol Microbiol; 1994 Aug; 13(3):505-12. PubMed ID: 7997167 [TBL] [Abstract][Full Text] [Related]
13. Development and characterization of a xylose-dependent system for expression of cloned genes in Bacillus subtilis: conditional complementation of a teichoic acid mutant. Bhavsar AP; Zhao X; Brown ED Appl Environ Microbiol; 2001 Jan; 67(1):403-10. PubMed ID: 11133472 [TBL] [Abstract][Full Text] [Related]
14. Cloning, expression and functional analyses of the catabolite control protein CcpA from Bacillus megaterium. Hueck CJ; Kraus A; Schmiedel D; Hillen W Mol Microbiol; 1995 Jun; 16(5):855-64. PubMed ID: 7476184 [TBL] [Abstract][Full Text] [Related]
16. Test systems to study transcriptional regulation and promoter activity in Bacillus megaterium. Schmidt S; Wolf N; Strey J; Nahrstedt H; Meinhardt F; Waldeck J Appl Microbiol Biotechnol; 2005 Sep; 68(5):647-55. PubMed ID: 15782292 [TBL] [Abstract][Full Text] [Related]
17. Cooperative and non-cooperative DNA binding modes of catabolite control protein CcpA from Bacillus megaterium result from sensing two different signals. Gösseringer R; Küster E; Galinier A; Deutscher J; Hillen W J Mol Biol; 1997 Mar; 266(4):665-76. PubMed ID: 9102460 [TBL] [Abstract][Full Text] [Related]
18. Regulation of expression, genetic organization and substrate specificity of xylose uptake in Bacillus megaterium. Schmiedel D; Kintrup M; Küster E; Hillen W Mol Microbiol; 1997 Mar; 23(5):1053-62. PubMed ID: 9076741 [TBL] [Abstract][Full Text] [Related]
19. Characterization of a theta plasmid replicon with homology to all four large plasmids of Bacillus megaterium QM B1551. Stevenson DM; Kunnimalaiyaan M; Müller K; Vary PS Plasmid; 1998 Nov; 40(3):175-89. PubMed ID: 9806855 [TBL] [Abstract][Full Text] [Related]