These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 8319885)
21. Catabolite repression of the operon for xylose utilization from Bacillus subtilis W23 is mediated at the level of transcription and depends on a cis site in the xylA reading frame. Jacob S; Allmansberger R; Gärtner D; Hillen W Mol Gen Genet; 1991 Oct; 229(2):189-96. PubMed ID: 1921970 [TBL] [Abstract][Full Text] [Related]
22. Inhibition by barbiturates of the binding of Bm3R1 repressor to its operator site on the barbiturate-inducible cytochrome P450BM-3 gene of Bacillus megaterium. Shaw GC; Fulco AJ J Biol Chem; 1993 Feb; 268(4):2997-3004. PubMed ID: 8428974 [TBL] [Abstract][Full Text] [Related]
23. Sequence homologies of glucose-dehydrogenases of Bacillus megaterium and Bacillus subtilis. Fortnagel P; Lampel KA; Neitzke KD; Freese E J Theor Biol; 1986 Jun; 120(4):489-97. PubMed ID: 3099087 [TBL] [Abstract][Full Text] [Related]
24. Analysis of an insertional operator mutation (gntOi) that affects the expression level of the Bacillus subtilis gnt operon, and characterization of gntOi suppressor mutations. Yoshida K; Miwa Y; Ohmori H; Fujita Y Mol Gen Genet; 1995 Sep; 248(5):583-91. PubMed ID: 7476858 [TBL] [Abstract][Full Text] [Related]
25. Missense mutations in the Bacillus subtilis gnt repressor that diminish operator binding ability. Yoshida K; Fujita Y; Sarai A J Mol Biol; 1993 May; 231(2):167-74. PubMed ID: 8510140 [TBL] [Abstract][Full Text] [Related]
26. Structure and function of the arginine repressor-operator complex from Bacillus subtilis. Garnett JA; Marincs F; Baumberg S; Stockley PG; Phillips SE J Mol Biol; 2008 May; 379(2):284-98. PubMed ID: 18455186 [TBL] [Abstract][Full Text] [Related]
27. Expression of Bacillus megaterium and Bacillus subtilis small acid-soluble spore protein genes during stationary-phase growth of asporogenous B. subtilis mutants. Mason JM; Setlow P J Bacteriol; 1984 Mar; 157(3):931-3. PubMed ID: 6421802 [TBL] [Abstract][Full Text] [Related]
29. Functional analysis of the response regulator DegU in Bacillus megaterium DSM319 and comparative secretome analysis of degSU mutants. Borgmeier C; Voigt B; Hecker M; Meinhardt F Appl Microbiol Biotechnol; 2011 Aug; 91(3):699-711. PubMed ID: 21538108 [TBL] [Abstract][Full Text] [Related]
30. [Molecular cloning of alpha-amylase gene from Bacillus megaterium and its expression in Bacillus subtilis]. Lü XY; Jiang RZ; Wang GF Yi Chuan Xue Bao; 1991; 18(2):185-92. PubMed ID: 1909533 [TBL] [Abstract][Full Text] [Related]
31. The Bacillus megaterium comE locus encodes a functional DNA uptake protein. Lammers M; Nahrstedt H; Meinhardt F J Basic Microbiol; 2004; 44(6):451-8. PubMed ID: 15558816 [TBL] [Abstract][Full Text] [Related]
32. Glucose and glucose-6-phosphate interaction with Xyl repressor proteins from Bacillus spp. may contribute to regulation of xylose utilization. Dahl MK; Schmiedel D; Hillen W J Bacteriol; 1995 Oct; 177(19):5467-72. PubMed ID: 7559331 [TBL] [Abstract][Full Text] [Related]
33. Analysis of a DNA-binding motif of the Bacillus subtilis HrcA repressor protein. Wiegert T; Schumann W FEMS Microbiol Lett; 2003 Jun; 223(1):101-6. PubMed ID: 12799007 [TBL] [Abstract][Full Text] [Related]
34. Distribution of Bacillus megaterium QM B1551 plasmids among other B. megaterium strains and Bacillus species. Rosso ML; Vary PS Plasmid; 2005 May; 53(3):205-17. PubMed ID: 15848225 [TBL] [Abstract][Full Text] [Related]
35. Mutations in PurBox1 of the Bacillus subtilis pur operon control site affect adenine-regulated expression in vivo. Xuan J; Zalkin H; Weng M Sci China C Life Sci; 2005 Apr; 48(2):133-8. PubMed ID: 15986885 [TBL] [Abstract][Full Text] [Related]
36. Nucleotide sequence of the penicillinase repressor gene penI of Bacillus licheniformis and regulation of penP and penI by the repressor. Himeno T; Imanaka T; Aiba S J Bacteriol; 1986 Dec; 168(3):1128-32. PubMed ID: 3096969 [TBL] [Abstract][Full Text] [Related]
37. Sequencing and characterization of the xyl operon of a gram-positive bacterium, Tetragenococcus halophila. Takeda Y; Takase K; Yamato I; Abe K Appl Environ Microbiol; 1998 Jul; 64(7):2513-9. PubMed ID: 9647823 [TBL] [Abstract][Full Text] [Related]
38. Interaction of the Bacillus subtilis phage phi 105 repressor DNA: a genetic analysis. Van Kaer L; Gansemans Y; Van Montagu M; Dhaese P EMBO J; 1988 Mar; 7(3):859-66. PubMed ID: 3135184 [TBL] [Abstract][Full Text] [Related]
39. Inducible high-level expression of heterologous genes in Bacillus megaterium using the regulatory elements of the xylose-utilization operon. Rygus T; Hillen W Appl Microbiol Biotechnol; 1991 Aug; 35(5):594-9. PubMed ID: 1367576 [TBL] [Abstract][Full Text] [Related]
40. Sugar uptake and carbon catabolite repression in Bacillus megaterium strains with inactivated ptsHI. Wagner A; Küster-Schöck E; Hillen W J Mol Microbiol Biotechnol; 2000 Oct; 2(4):587-92. PubMed ID: 11075936 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]