These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 8320243)

  • 1. Uptake of galacturonic acid in Erwinia chrysanthemi EC16.
    San Francisco MJ; Keenan RW
    J Bacteriol; 1993 Jul; 175(13):4263-5. PubMed ID: 8320243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of exuT activity for galacturonate transport by the negative regulator ExuR in Erwinia chrysanthemi EC16.
    Valmeekam V; Loh YL; San Francisco MJ
    Mol Plant Microbe Interact; 2001 Jun; 14(6):816-20. PubMed ID: 11386378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The exuT gene of Erwinia chrysanthemi EC16: nucleotide sequence, expression, localization, and relevance of the gene product.
    Haseloff BJ; Freeman TL; Valmeekam V; Melkus MW; Oner F; Valachovic MS; San Francisco MJ
    Mol Plant Microbe Interact; 1998 Apr; 11(4):270-6. PubMed ID: 9530868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of TogMNAB, an ABC transporter which mediates the uptake of pectic oligomers in Erwinia chrysanthemi 3937.
    Hugouvieux-Cotte-Pattat N; Blot N; Reverchon S
    Mol Microbiol; 2001 Sep; 41(5):1113-23. PubMed ID: 11555291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Erwinia chrysanthemi EC16 hrp/hrc gene cluster encodes an active Hrp type III secretion system that is flanked by virulence genes functionally unrelated to the Hrp system.
    Rojas CM; Ham JH; Schechter LM; Kim JF; Beer SV; Collmer A
    Mol Plant Microbe Interact; 2004 Jun; 17(6):644-53. PubMed ID: 15195947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling of iron assimilation and pectinolysis in Erwinia chrysanthemi 3937.
    Franza T; Michaud-Soret I; Piquerel P; Expert D
    Mol Plant Microbe Interact; 2002 Nov; 15(11):1181-91. PubMed ID: 12423024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two transporters, TogT and TogMNAB, are responsible for oligogalacturonide uptake in Erwinia chrysanthemi 3937.
    Hugouvieux-Cotte-Pattat N; Reverchon S
    Mol Microbiol; 2001 Sep; 41(5):1125-32. PubMed ID: 11555292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fermentations of pectin-rich biomass with recombinant bacteria to produce fuel ethanol.
    Doran JB; Cripe J; Sutton M; Foster B
    Appl Biochem Biotechnol; 2000; 84-86():141-52. PubMed ID: 10849785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular polysaccharide of Erwinia chrysanthemi Ech6.
    Yang BY; Gray JS; Montgomery R
    Int J Biol Macromol; 1994 Dec; 16(6):306-12. PubMed ID: 7727344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Genetic regulation of pathogenicity and virulence factors in bacteria Erwinia carotovora subsp. atroseptica: identification of kduD gene].
    Miamin VE; Pesniakevich AG; Nikolaĭchik EA; Prokulevich VA
    Genetika; 2004 Sep; 40(9):1187-93. PubMed ID: 15559145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and characterization of Erwinia chrysanthemi mutants defective in degradation of hexuronates.
    van Gijsegem F; Hugouvieux-Cotte-Pattat N; Robert-Baudouy J
    J Bacteriol; 1985 Feb; 161(2):702-8. PubMed ID: 3968035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hexuronate catabolism in Erwinia chrysanthemi.
    Hugouvieux-Cotte-Pattat N; Robert-Baudouy J
    J Bacteriol; 1987 Mar; 169(3):1223-31. PubMed ID: 3029026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The cyclic AMP receptor protein is the main activator of pectinolysis genes in Erwinia chrysanthemi.
    Reverchon S; Expert D; Robert-Baudouy J; Nasser W
    J Bacteriol; 1997 Jun; 179(11):3500-8. PubMed ID: 9171393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning of genes encoding extracellular metalloproteases from Erwinia chrysanthemi EC16.
    Dahler GS; Barras F; Keen NT
    J Bacteriol; 1990 Oct; 172(10):5803-15. PubMed ID: 2211513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutations of ousA alter the virulence of Erwinia chrysanthemi.
    Gloux K; Touze T; Pagot Y; Jouan B; Blanco C
    Mol Plant Microbe Interact; 2005 Feb; 18(2):150-7. PubMed ID: 15720084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a Ralstonia solanacearum operon required for polygalacturonate degradation and uptake of galacturonic acid.
    González ET; Allen C
    Mol Plant Microbe Interact; 2003 Jun; 16(6):536-44. PubMed ID: 12795379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential depolymerization mechanisms of pectate lyases secreted by Erwinia chrysanthemi EC16.
    Preston JF; Rice JD; Ingram LO; Keen NT
    J Bacteriol; 1992 Mar; 174(6):2039-42. PubMed ID: 1548242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The transcriptional activator GaaR of Aspergillus niger is required for release and utilization of d-galacturonic acid from pectin.
    Alazi E; Niu J; Kowalczyk JE; Peng M; Aguilar Pontes MV; van Kan JA; Visser J; de Vries RP; Ram AF
    FEBS Lett; 2016 Jun; 590(12):1804-15. PubMed ID: 27174630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput screening of Erwinia chrysanthemi pectin methylesterase variants using carbohydrate microarrays.
    Øbro J; Sørensen I; Derkx P; Madsen CT; Drews M; Willer M; Mikkelsen JD; Willats WG
    Proteomics; 2009 Apr; 9(7):1861-8. PubMed ID: 19333997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-regulation of pir, a regulatory protein responsible for hyperinduction of pectate lyase in Erwinia chrysanthemi EC16.
    Nomura K; Nasser W; Tsuyumu S
    Mol Plant Microbe Interact; 1999 May; 12(5):385-90. PubMed ID: 10226371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.