These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 8321229)
1. Evidence from mutation spectra that the UV hypermutability of xeroderma pigmentosum variant cells reflects abnormal, error-prone replication on a template containing photoproducts. Wang YC; Maher VM; Mitchell DL; McCormick JJ Mol Cell Biol; 1993 Jul; 13(7):4276-83. PubMed ID: 8321229 [TBL] [Abstract][Full Text] [Related]
2. Abnormal, error-prone bypass of photoproducts by xeroderma pigmentosum variant cell extracts results in extreme strand bias for the kinds of mutations induced by UV light. McGregor WG; Wei D; Maher VM; McCormick JJ Mol Cell Biol; 1999 Jan; 19(1):147-54. PubMed ID: 9858539 [TBL] [Abstract][Full Text] [Related]
3. Comparison of the rate of excision of major UV photoproducts in the strands of the human HPRT gene of normal and xeroderma pigmentosum variant cells. Tung BS; McGregor WG; Wang YC; Maher VM; McCormick JJ Mutat Res; 1996 Jan; 362(1):65-74. PubMed ID: 8538650 [TBL] [Abstract][Full Text] [Related]
4. Xeroderma pigmentosum variant cells are less likely than normal cells to incorporate dAMP opposite photoproducts during replication of UV-irradiated plasmids. Wang YC; Maher VM; McCormick JJ Proc Natl Acad Sci U S A; 1991 Sep; 88(17):7810-4. PubMed ID: 1652764 [TBL] [Abstract][Full Text] [Related]
5. Cell cycle-dependent strand bias for UV-induced mutations in the transcribed strand of excision repair-proficient human fibroblasts but not in repair-deficient cells. McGregor WG; Chen RH; Lukash L; Maher VM; McCormick JJ Mol Cell Biol; 1991 Apr; 11(4):1927-34. PubMed ID: 2005888 [TBL] [Abstract][Full Text] [Related]
6. Excision repair of UV- or benzo[a]pyrene diol epoxide-induced lesions in xeroderma pigmentosum variant cells is 'error free'. Watanabe M; Maher VM; McCormick JJ Mutat Res; 1985 Nov; 146(3):285-94. PubMed ID: 3932847 [TBL] [Abstract][Full Text] [Related]
7. Replication of damaged DNA: molecular defect in xeroderma pigmentosum variant cells. Cordonnier AM; Fuchs RP Mutat Res; 1999 Oct; 435(2):111-9. PubMed ID: 10556591 [TBL] [Abstract][Full Text] [Related]
8. Evidence for defective repair of cyclobutane pyrimidine dimers with normal repair of other DNA photoproducts in a transcriptionally active gene transfected into Cockayne syndrome cells. Barrett SF; Robbins JH; Tarone RE; Kraemer KH Mutat Res; 1991 Nov; 255(3):281-91. PubMed ID: 1719400 [TBL] [Abstract][Full Text] [Related]
10. Transcription-coupled repair removes both cyclobutane pyrimidine dimers and 6-4 photoproducts with equal efficiency and in a sequential way from transcribed DNA in xeroderma pigmentosum group C fibroblasts. van Hoffen A; Venema J; Meschini R; van Zeeland AA; Mullenders LH EMBO J; 1995 Jan; 14(2):360-7. PubMed ID: 7835346 [TBL] [Abstract][Full Text] [Related]
11. The frequency of mutants in human fibroblasts UV-irradiated at various times during S-phase suggests that genes for thioguanine- and diphtheria toxin-resistance are replicated early. Grossmann A; Maher VM; McCormick JJ Mutat Res; 1985 Oct; 152(1):67-76. PubMed ID: 3930956 [TBL] [Abstract][Full Text] [Related]
12. Ultraviolet-induced mutations in Cockayne syndrome cells are primarily caused by cyclobutane dimer photoproducts while repair of other photoproducts is normal. Parris CN; Kraemer KH Proc Natl Acad Sci U S A; 1993 Aug; 90(15):7260-4. PubMed ID: 8346243 [TBL] [Abstract][Full Text] [Related]
13. Respective roles of cyclobutane pyrimidine dimers, (6-4)photoproducts, and minor photoproducts in ultraviolet mutagenesis of repair-deficient xeroderma pigmentosum A cells. Otoshi E; Yagi T; Mori T; Matsunaga T; Nikaido O; Kim ST; Hitomi K; Ikenaga M; Todo T Cancer Res; 2000 Mar; 60(6):1729-35. PubMed ID: 10749146 [TBL] [Abstract][Full Text] [Related]
14. Analysis of point mutations in an ultraviolet-irradiated shuttle vector plasmid propagated in cells from Japanese xeroderma pigmentosum patients in complementation groups A and F. Yagi T; Tatsumi-Miyajima J; Sato M; Kraemer KH; Takebe H Cancer Res; 1991 Jun; 51(12):3177-82. PubMed ID: 2039995 [TBL] [Abstract][Full Text] [Related]
15. DNA damage and repair in normal, xeroderma pigmentosum and XP revertant cells analyzed by gel electrophoresis: excision of cyclobutane dimers from the whole genome is not necessary for cell survival. Cleaver JE Carcinogenesis; 1989 Sep; 10(9):1691-6. PubMed ID: 2766460 [TBL] [Abstract][Full Text] [Related]
16. Defective postreplication repair in xeroderma pigmentosum variant fibroblasts. Boyer JC; Kaufmann WK; Brylawski BP; Cordeiro-Stone M Cancer Res; 1990 May; 50(9):2593-8. PubMed ID: 2109654 [TBL] [Abstract][Full Text] [Related]
17. DNA repair and ultraviolet mutagenesis in cells from a new patient with xeroderma pigmentosum group G and cockayne syndrome resemble xeroderma pigmentosum cells. Moriwaki S; Stefanini M; Lehmann AR; Hoeijmakers JH; Robbins JH; Rapin I; Botta E; Tanganelli B; Vermeulen W; Broughton BC; Kraemer KH J Invest Dermatol; 1996 Oct; 107(4):647-53. PubMed ID: 8823375 [TBL] [Abstract][Full Text] [Related]
18. Evidence for persistent UV-induced DNA damage and altered DNA damage response in xeroderma pigmentosa patient corneas. Akepogu J; Jakati S; Chaurasia S; Ramachandran C Exp Eye Res; 2024 Jun; 243():109901. PubMed ID: 38641197 [TBL] [Abstract][Full Text] [Related]
19. Evidence that in xeroderma pigmentosum variant cells, which lack DNA polymerase eta, DNA polymerase iota causes the very high frequency and unique spectrum of UV-induced mutations. Wang Y; Woodgate R; McManus TP; Mead S; McCormick JJ; Maher VM Cancer Res; 2007 Apr; 67(7):3018-26. PubMed ID: 17409408 [TBL] [Abstract][Full Text] [Related]
20. Requirement for functional DNA polymerase eta in genome-wide repair of UV-induced DNA damage during S phase. Auclair Y; Rouget R; Belisle JM; Costantino S; Drobetsky EA DNA Repair (Amst); 2010 Jul; 9(7):754-64. PubMed ID: 20457011 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]