BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 8321830)

  • 1. Passive transepithelial absorption of thyrotropin-releasing hormone (TRH) via a paracellular route in cultured intestinal and renal epithelial cell lines.
    Thwaites DT; Hirst BH; Simmons NL
    Pharm Res; 1993 May; 10(5):674-81. PubMed ID: 8321830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thyrotropin-releasing hormone (TRH) uptake in intestinal brush-border membrane vesicles: comparison with proton-coupled dipeptide and Na(+)-coupled glucose transport.
    Thwaites DT; Simmons NL; Hirst BH
    Pharm Res; 1993 May; 10(5):667-73. PubMed ID: 8391693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for predominantly paracellular transport of thyrotropin-releasing hormone across CACO-2 cell monolayers.
    Gan LS; Niederer T; Eads C; Thakker D
    Biochem Biophys Res Commun; 1993 Dec; 197(2):771-7. PubMed ID: 8267614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on the transport of thyrotropin-releasing hormone (TRH) analogues in Caco-2 cell monolayers.
    Urayama A; Yamada S; Deguchi Y; Ohmori Y; Kimura R
    J Pharm Pharmacol; 2003 May; 55(5):603-8. PubMed ID: 12831502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transepithelial transport and metabolism of thyrotropin-releasing hormone (TRH) in monolayers of a human intestinal cell line (Caco-2): evidence for an active transport component?
    Walter E; Kissel T
    Pharm Res; 1994 Nov; 11(11):1575-80. PubMed ID: 7870674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport of thyrotropin-releasing hormone across rat alveolar epithelial cell monolayers.
    Morimoto K; Yamahara H; Lee VH; Kim KJ
    Life Sci; 1994; 54(26):2083-92. PubMed ID: 8208065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The absorptive flux of the anti-epileptic drug substance vigabatrin is carrier-mediated across Caco-2 cell monolayers.
    Nøhr MK; Hansen SH; Brodin B; Holm R; Nielsen CU
    Eur J Pharm Sci; 2014 Jan; 51():1-10. PubMed ID: 24008184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Caco-2 versus Caco-2/HT29-MTX co-cultured cell lines: permeabilities via diffusion, inside- and outside-directed carrier-mediated transport.
    Hilgendorf C; Spahn-Langguth H; Regårdh CG; Lipka E; Amidon GL; Langguth P
    J Pharm Sci; 2000 Jan; 89(1):63-75. PubMed ID: 10664539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intestinal absorption mechanisms of thyrotropin-releasing hormone.
    Yokohama S; Yoshioka T; Yamashita K; Kitamori N
    J Pharmacobiodyn; 1984 Jul; 7(7):445-51. PubMed ID: 6436461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of peptide structure on transport properties of seven thyrotropin releasing hormone (TRH) analogues in a human intestinal cell line (Caco-2).
    Werner U; Kissel T; Stüber W
    Pharm Res; 1997 Feb; 14(2):246-50. PubMed ID: 9090718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the Caco-2 monolayer as a model epithelium for iontophoretic transport.
    Leonard M; Creed E; Brayden D; Baird AW
    Pharm Res; 2000 Oct; 17(10):1181-8. PubMed ID: 11145222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Absence of a transcellular oxalate transport mechanism in LLC-PK1 and MDCK cells cultured on porous supports.
    Verkoelen CF; Romijn JC; de Bruijn WC; Boevé ER; Cao LC; Schröder FH
    Scanning Microsc; 1993 Sep; 7(3):1031-8; discussion 1038-40. PubMed ID: 8146604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. H(+)-coupled dipeptide (glycylsarcosine) transport across apical and basal borders of human intestinal Caco-2 cell monolayers display distinctive characteristics.
    Thwaites DT; Brown CD; Hirst BH; Simmons NL
    Biochim Biophys Acta; 1993 Sep; 1151(2):237-45. PubMed ID: 8373798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Paracellular calcium transport across Caco-2 and HT29 cell monolayers.
    Blais A; Aymard P; Lacour B
    Pflugers Arch; 1997 Jul; 434(3):300-5. PubMed ID: 9178630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Molecular and cell biological analyses for intestinal absorption and renal excretion of drugs].
    Saito H
    Yakugaku Zasshi; 1997 Aug; 117(8):522-41. PubMed ID: 9306727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Angiotensin-converting enzyme (ACE) inhibitor transport in human intestinal epithelial (Caco-2) cells.
    Thwaites DT; Cavet M; Hirst BH; Simmons NL
    Br J Pharmacol; 1995 Mar; 114(5):981-6. PubMed ID: 7780654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of intestinal absorption of thyrotropin-releasing hormone by chemical modification with lauric acid.
    Yamada K; Murakami M; Yamamoto A; Takada K; Muranishi S
    J Pharm Pharmacol; 1992 Sep; 44(9):717-21. PubMed ID: 1360521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intestinal absorption of miltefosine: contribution of passive paracellular transport.
    Ménez C; Buyse M; Dugave C; Farinotti R; Barratt G
    Pharm Res; 2007 Mar; 24(3):546-54. PubMed ID: 17252190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate specificity of the di/tripeptide transporter in human intestinal epithelia (Caco-2): identification of substrates that undergo H(+)-coupled absorption.
    Thwaites DT; Hirst BH; Simmons NL
    Br J Pharmacol; 1994 Nov; 113(3):1050-6. PubMed ID: 7858848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epithelial cells in culture as a model for the intestinal transport of antimicrobial agents.
    Ranaldi G; Islam K; Sambuy Y
    Antimicrob Agents Chemother; 1992 Jul; 36(7):1374-81. PubMed ID: 1510430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.