These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 8322511)

  • 41. Nucleotide sequence of the galactose gene cluster of Kluyveromyces lactis.
    Webster TD; Dickson RC
    Nucleic Acids Res; 1988 Aug; 16(16):8192-4. PubMed ID: 3419917
    [No Abstract]   [Full Text] [Related]  

  • 42. Expanding family.
    Boguski MS; Sikorski RS; Hieter P; Goebl M
    Nature; 1990 Jul; 346(6280):114. PubMed ID: 1694969
    [No Abstract]   [Full Text] [Related]  

  • 43. Subtelomeric regions of yeast chromosomes contain a 36 base-pair tandemly repeated sequence.
    Horowitz H; Haber JE
    Nucleic Acids Res; 1984 Sep; 12(18):7105-21. PubMed ID: 6091055
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The sequence of the Kluyveromyces lactis BiP gene.
    Lewis MJ; Pelham HR
    Nucleic Acids Res; 1990 Nov; 18(21):6438. PubMed ID: 2243798
    [No Abstract]   [Full Text] [Related]  

  • 45. A "CAT" family of repetitive DNA sequences in Saccharomyces cerevisiae.
    Wildeman AG; Rasquinha I; Nazar RN
    J Biol Chem; 1986 Oct; 261(29):13401-3. PubMed ID: 3531204
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The RAG2 gene of the yeast Kluyveromyces lactis codes for a putative phosphoglucose isomerase.
    Wésolowski-Louvel M; Goffrini P; Ferrero I
    Nucleic Acids Res; 1988 Sep; 16(17):8714. PubMed ID: 3419932
    [No Abstract]   [Full Text] [Related]  

  • 47. Physical and functional structure of a yeast plasmid, pSB3, isolated from Zygosaccharomyces bisporus.
    Toh-e A; Utatsu I
    Nucleic Acids Res; 1985 Jun; 13(12):4267-83. PubMed ID: 2989791
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Yeast plasmids resembling 2 micron DNA: regional similarities and diversities at the molecular level.
    Utatsu I; Sakamoto S; Imura T; Toh-e A
    J Bacteriol; 1987 Dec; 169(12):5537-45. PubMed ID: 3680169
    [TBL] [Abstract][Full Text] [Related]  

  • 49. PIR1, a novel phosphatase that exhibits high affinity to RNA . ribonucleoprotein complexes.
    Yuan Y; Li DM; Sun H
    J Biol Chem; 1998 Aug; 273(32):20347-53. PubMed ID: 9685386
    [TBL] [Abstract][Full Text] [Related]  

  • 50. hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures.
    Borkovich KA; Farrelly FW; Finkelstein DB; Taulien J; Lindquist S
    Mol Cell Biol; 1989 Sep; 9(9):3919-30. PubMed ID: 2674684
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Saccharomyces cerevisiae survival against heat stress entails a communication between CCT and cell wall integrity pathway.
    Dube A; Pullepu D; Kabir MA
    Biol Futur; 2023 Dec; 74(4):519-527. PubMed ID: 37964139
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Streamlining N-terminally anchored yeast surface display via structural insights into S. cerevisiae Pir proteins.
    Martinić Cezar T; Lozančić M; Novačić A; Matičević A; Matijević D; Vallée B; Mrša V; Teparić R; Žunar B
    Microb Cell Fact; 2023 Sep; 22(1):174. PubMed ID: 37679759
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Peering Into
    Kim J; Oh SH; Rodriguez-Bobadilla R; Vuong VM; Hubka V; Zhao X; Hoyer LL
    Front Cell Infect Microbiol; 2022; 12():836632. PubMed ID: 35372132
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Involvement of the Cell Wall Integrity Pathway of Saccharomyces cerevisiae in Protection against Cadmium and Arsenate Stresses.
    Techo T; Charoenpuntaweesin S; Auesukaree C
    Appl Environ Microbiol; 2020 Oct; 86(21):. PubMed ID: 32859590
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Differential Proteomic Approach to Characterize the Cell Wall Adaptive Response to CO
    Porras-Agüera JA; Mauricio JC; Moreno-García J; Moreno J; García-Martínez T
    Microorganisms; 2020 Aug; 8(8):. PubMed ID: 32759881
    [TBL] [Abstract][Full Text] [Related]  

  • 56. IRES-dependent translated genes in fungi: computational prediction, phylogenetic conservation and functional association.
    Peguero-Sanchez E; Pardo-Lopez L; Merino E
    BMC Genomics; 2015 Dec; 16():1059. PubMed ID: 26666532
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall.
    Orlean P
    Genetics; 2012 Nov; 192(3):775-818. PubMed ID: 23135325
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway.
    Levin DE
    Genetics; 2011 Dec; 189(4):1145-75. PubMed ID: 22174182
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Unexpected role for a serine/threonine-rich domain in the Candida albicans Iff protein family.
    Boisramé A; Cornu A; Da Costa G; Richard ML
    Eukaryot Cell; 2011 Oct; 10(10):1317-30. PubMed ID: 21841123
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A genomic approach highlights common and diverse effects and determinants of susceptibility on the yeast Saccharomyces cerevisiae exposed to distinct antimicrobial peptides.
    López-García B; Gandía M; Muñoz A; Carmona L; Marcos JF
    BMC Microbiol; 2010 Nov; 10():289. PubMed ID: 21078184
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.