These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 8322928)

  • 1. Effective distributed compliance of the canine descending aorta estimated by modified T-tube model.
    Burattini R; Campbell KB
    Am J Physiol; 1993 Jun; 264(6 Pt 2):H1977-87. PubMed ID: 8322928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and physiological relevance of an exponentially tapered tube model of canine descending aortic circulation.
    Fogliardi R; Burattini R; Campbell KB
    Med Eng Phys; 1997 Apr; 19(3):201-11. PubMed ID: 9239639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological relevance of uniform elastic tube-models to infer descending aortic wave reflection: a problem of identifiability.
    Burattini R; Campbell KB
    Ann Biomed Eng; 2000 May; 28(5):512-23. PubMed ID: 10925949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two arterial effective reflecting sites may appear as one to the heart.
    Burattini R; Knowlen GG; Campbell KB
    Circ Res; 1991 Jan; 68(1):85-99. PubMed ID: 1984875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modified asymmetric T-tube model to infer arterial wave reflection at the aortic root.
    Burattini R; Campbell KB
    IEEE Trans Biomed Eng; 1989 Aug; 36(8):805-14. PubMed ID: 2759639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exponentially tapered t-tube model of systemic arterial system in dogs.
    Chang KC; Tseng YZ; Lin YJ; Kuo TS; Chen HI
    Med Eng Phys; 1994 Sep; 16(5):370-8. PubMed ID: 7952675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of pulse pressure method for estimating total arterial compliance in vivo.
    Stergiopulos N; Segers P; Westerhof N
    Am J Physiol; 1999 Feb; 276(2):H424-8. PubMed ID: 9950841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aortic elastic properties with transesophageal echocardiography with automated border detection: validation according to regional differences between proximal and distal descending thoracic aorta.
    Cholley BP; Shroff SG; Korcarz C; Lang RM
    J Am Soc Echocardiogr; 1996; 9(4):539-48. PubMed ID: 8827637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using velocity-pressure loops in the operating room: a new approach of arterial mechanics for cardiac afterload monitoring under general anesthesia.
    Hong A; Joachim J; Buxin C; Levé C; Le Gall A; Millasseau S; Mateo J; Civelli V; Serrano J; Mebazaa A; Gayat E; Vallée F
    Am J Physiol Heart Circ Physiol; 2019 Dec; 317(6):H1354-H1362. PubMed ID: 31674813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pressure-flow loops and instantaneous input impedance in the thoracic aorta: another way to assess the effect of aortic bypass graft implantation on myocardial, brain, and subdiaphragmatic perfusion.
    Mekkaoui C; Rolland PH; Friggi A; Rasigni M; Mesana TG
    J Thorac Cardiovasc Surg; 2003 Mar; 125(3):699-710. PubMed ID: 12658214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regional wave travel and reflections along the human aorta: a study with six simultaneous micromanometric pressures.
    Latham RD; Westerhof N; Sipkema P; Rubal BJ; Reuderink P; Murgo JP
    Circulation; 1985 Dec; 72(6):1257-69. PubMed ID: 4064270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Segmental volume distensibility of the canine thoracic aorta in vivo.
    Gentile BJ; Gross DR; Chuong CJ; Hwang NH
    Cardiovasc Res; 1988 Jun; 22(6):385-9. PubMed ID: 3224350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-domain formulation of asymmetric T-tube model of arterial system.
    Campbell KB; Burattini R; Bell DL; Kirkpatrick RD; Knowlen GG
    Am J Physiol; 1990 Jun; 258(6 Pt 2):H1761-74. PubMed ID: 2360669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological relevance of T-tube model parameters with emphasis on arterial compliances.
    Shroff SG; Berger DS; Korcarz C; Lang RM; Marcus RH; Miller DE
    Am J Physiol; 1995 Jul; 269(1 Pt 2):H365-74. PubMed ID: 7631869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arterial mechanics in the fin whale suggest a unique hemodynamic design.
    Shadwick RE; Gosline JM
    Am J Physiol; 1994 Sep; 267(3 Pt 2):R805-18. PubMed ID: 8092327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endografting of the descending thoracic aorta increases ascending aortic input impedance and attenuates pressure transmission in dogs.
    Dobson G; Flewitt J; Tyberg JV; Moore R; Karamanoglu M
    Eur J Vasc Endovasc Surg; 2006 Aug; 32(2):129-35. PubMed ID: 16564712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fit to diastolic arterial pressure by third-order lumped model yields unreliable estimates of arterial compliance.
    Fogliardi R; Burattini R; Shroff SG; Campbell KB
    Med Eng Phys; 1996 Apr; 18(3):225-33. PubMed ID: 8718948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wave intensity in the ascending aorta: effects of arterial occlusion.
    Khir AW; Parker KH
    J Biomech; 2005 Apr; 38(4):647-55. PubMed ID: 15713284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow patterns at the major T-junctions of the dog descending aorta.
    Karino T; Motomiya M; Goldsmith HL
    J Biomech; 1990; 23(6):537-48. PubMed ID: 2341417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exponentially tapered T-tube model in the characterization of arterial non-uniformity.
    Chang KC; Kuo TS
    J Theor Biol; 1996 Nov; 183(1):35-46. PubMed ID: 8959109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.