BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 8322982)

  • 1. Role of endothelium-derived nitric oxide in hemodynamic adaptations after graded renal mass reduction.
    Griffin KA; Bidani AK; Ouyang J; Ellis V; Churchill M; Churchill PC
    Am J Physiol; 1993 Jun; 264(6 Pt 2):R1254-9. PubMed ID: 8322982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of nitric oxide in the autoregulation of renal blood flow and glomerular filtration rate in aging spontaneously hypertensive rats.
    Kvam FI; Ofstad J; Iversen BM
    Kidney Blood Press Res; 2000; 23(6):376-84. PubMed ID: 11070417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endothelium-derived nitric oxide modulates renal hemodynamics in the developing piglet.
    Solhaug MJ; Wallace MR; Granger JP
    Pediatr Res; 1993 Dec; 34(6):750-4. PubMed ID: 8108187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitric oxide inhibition in rats improves blood pressure and renal function during hypovolemic shock.
    Lieberthal W; McGarry AE; Sheils J; Valeri CR
    Am J Physiol; 1991 Nov; 261(5 Pt 2):F868-72. PubMed ID: 1951718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of endothelium-derived nitric oxide in the renal hemodynamic response to amino acid infusion.
    Chen C; Mitchell KD; Navar LG
    Am J Physiol; 1992 Sep; 263(3 Pt 2):R510-6. PubMed ID: 1415635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide in afferent arterioles after uninephrectomy depends on extracellular L-arginine.
    Helle F; Skogstrand T; Schwartz IF; Schwartz D; Iversen BM; Palm F; Hultström M
    Am J Physiol Renal Physiol; 2013 Apr; 304(8):F1088-98. PubMed ID: 23408167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide: a potential mediator of amino acid-induced renal hyperemia and hyperfiltration.
    King AJ; Troy JL; Anderson S; Neuringer JR; Gunning M; Brenner BM
    J Am Soc Nephrol; 1991 Jun; 1(12):1271-7. PubMed ID: 1912389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of nitric oxide in the early renal hemodynamic response after unilateral nephrectomy.
    Valdivielso JM; Pérez-Barriocanal F; García-Estañ J; López-Novoa JM
    Am J Physiol; 1999 Jun; 276(6):R1718-23. PubMed ID: 10362752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of endothelium-derived relaxing factor in regulation of renal hemodynamic responses.
    Tolins JP; Palmer RM; Moncada S; Raij L
    Am J Physiol; 1990 Mar; 258(3 Pt 2):H655-62. PubMed ID: 2156453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EDRF role in renal function and blood pressure of normal rats and rats with obstructive uropathy.
    Reyes AA; Martin D; Settle S; Klahr S
    Kidney Int; 1992 Feb; 41(2):403-13. PubMed ID: 1552713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dietary sodium affects systemic and renal hemodynamic response to NO inhibition in healthy humans.
    Bech JN; Nielsen CB; Ivarsen P; Jensen KT; Pedersen EB
    Am J Physiol; 1998 May; 274(5):F914-23. PubMed ID: 9612329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptation to increased dietary salt intake in the rat. Role of endogenous nitric oxide.
    Shultz PJ; Tolins JP
    J Clin Invest; 1993 Feb; 91(2):642-50. PubMed ID: 7679414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute blockade of nitric oxide synthase inhibits renal vasodilation and hyperfiltration during pregnancy in chronically instrumented conscious rats.
    Danielson LA; Conrad KP
    J Clin Invest; 1995 Jul; 96(1):482-90. PubMed ID: 7542284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glomerular and tubular interactions between renal adrenergic activity and nitric oxide.
    Gabbai FB; Thomson SC; Peterson O; Wead L; Malvey K; Blantz RC
    Am J Physiol; 1995 Jun; 268(6 Pt 2):F1004-8. PubMed ID: 7611442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of nitric oxide in the renal hemodynamic response to a meat meal.
    Salazar FJ; Alberola A; Nakamura T; Granger JP
    Am J Physiol; 1994 Oct; 267(4 Pt 2):R1050-5. PubMed ID: 7943415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of amino acid infusion on renal hemodynamics. Role of endothelium-derived relaxing factor.
    Tolins JP; Raij L
    Hypertension; 1991 Jun; 17(6 Pt 2):1045-51. PubMed ID: 2045148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of blood flow autoregulation plateau during nitric oxide blockade in canine kidney.
    Majid DS; Navar LG
    Am J Physiol; 1992 Jan; 262(1 Pt 2):F40-6. PubMed ID: 1733296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endothelin receptor A blockade alters hemodynamic response to nitric oxide inhibition in rats.
    Thompson A; Valeri CR; Lieberthal W
    Am J Physiol; 1995 Aug; 269(2 Pt 2):H743-8. PubMed ID: 7653640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrarenal haemodynamics and renal dysfunction in endotoxaemia: effects of nitric oxide synthase inhibition.
    Millar CG; Thiemermann C
    Br J Pharmacol; 1997 Aug; 121(8):1824-30. PubMed ID: 9283724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of endothelium-derived relaxing factor in the in vivo renal vascular action of adenosine in dogs.
    Okumura M; Miura K; Yamashita Y; Yukimura T; Yamamoto K
    J Pharmacol Exp Ther; 1992 Mar; 260(3):1262-7. PubMed ID: 1545391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.