BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 8323027)

  • 1. A comparison of bathophenanthrolinedisulfonic acid and ferrozine as chelators of iron(II) in reduction reactions.
    Cowart RE; Singleton FL; Hind JS
    Anal Biochem; 1993 May; 211(1):151-5. PubMed ID: 8323027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of citrinin on iron-redox cycle.
    Da Lozzo EJ; Mangrich AS; Rocha ME; de Oliveira MB; Carnieri EG
    Cell Biochem Funct; 2002 Mar; 20(1):19-29. PubMed ID: 11835267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photochemical reduction of ferric iron by chelators results in DNA strand breaks.
    Chao CC; Aust AE
    Arch Biochem Biophys; 1993 Feb; 300(2):544-50. PubMed ID: 8382025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Determination of serum iron; a comparison of two methods: Teepol/dithionite/bathophenanthroline versus guanidine/ascorbic acid/Ferrozine (author's transl)].
    Lauber K
    J Clin Chem Clin Biochem; 1980 Feb; 18(2):147-8. PubMed ID: 7373240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complexation of ferrous ions by ferrozine, 2,2'-bipyridine and 1,10-phenanthroline: Implication for the quantification of iron in biological systems.
    Smith GL; Reutovich AA; Srivastava AK; Reichard RE; Welsh CH; Melman A; Bou-Abdallah F
    J Inorg Biochem; 2021 Jul; 220():111460. PubMed ID: 33866045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron autoxidation and free radical generation: effects of buffers, ligands, and chelators.
    Welch KD; Davis TZ; Aust SD
    Arch Biochem Biophys; 2002 Jan; 397(2):360-9. PubMed ID: 11795895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of metal ion buffers for biological experimentation: a methods approach with emphasis on iron and zinc.
    Aslamkhan AG; Aslamkhan A; Ahearn GA
    J Exp Zool; 2002 May; 292(6):507-22. PubMed ID: 12115934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ferric and cupric reductase activities by iron-limited cells of the green alga Chlorella kessleri: quantification via oxygen electrode.
    Weger HG; Walker CN; Fink MB
    Physiol Plant; 2007 Oct; 131(2):322-31. PubMed ID: 18251903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tannic acid inhibits in vitro iron-dependent free radical formation.
    Andrade RG; Ginani JS; Lopes GK; Dutra F; Alonso A; Hermes-Lima M
    Biochimie; 2006 Sep; 88(9):1287-96. PubMed ID: 16600466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of inorganic, synthetic and naturally occurring chelating agents on Fe(II) mediated advanced oxidation of chlorophenols.
    Rastogi A; Al-Abed SR; Dionysiou DD
    Water Res; 2009 Feb; 43(3):684-94. PubMed ID: 19038413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox reactions in the Fe-As-O2 system.
    Johnston RB; Singer PC
    Chemosphere; 2007 Sep; 69(4):517-25. PubMed ID: 17521697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of 21-aminosteroids on the redox status of iron in solution.
    Ryan TP; Petry TW
    Arch Biochem Biophys; 1993 Feb; 300(2):699-704. PubMed ID: 8434949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective determination of Fe(III) in Fe(II) samples by UV-spectrophotometry with the aid of quercetin and morin.
    Balcerzak M; Tyburska A; Swiecicka-Füchsel E
    Acta Pharm; 2008 Sep; 58(3):327-34. PubMed ID: 19103569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measured rates of fluoride/metal association correlate with rates of superoxide/metal reactions for Fe(III)EDTA(H2O)- and related complexes.
    Summers JS; Baker JB; Meyerstein D; Mizrahi A; Zilbermann I; Cohen H; Wilson CM; Jones JR
    J Am Chem Soc; 2008 Feb; 130(5):1727-34. PubMed ID: 18186636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterocyclic dithiocarbazate iron chelators: Fe coordination chemistry and biological activity.
    Basha MT; Chartres JD; Pantarat N; Ali MA; Mirza AH; Kalinowski DS; Richardson DR; Bernhardt PV
    Dalton Trans; 2012 Jun; 41(21):6536-48. PubMed ID: 22362375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of ferrous and ferric iron in aqueous biological solutions.
    Pepper SE; Borkowski M; Richmann MK; Reed DT
    Anal Chim Acta; 2010 Mar; 663(2):172-7. PubMed ID: 20206007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diferric transferrin reduction by K562 cells. A critical study.
    Bérczi A; Sizensky JA; Crane FL; Faulk WP
    Biochim Biophys Acta; 1991 Apr; 1073(3):562-70. PubMed ID: 2015280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of low molecular mass iron by reducing molecules present in plasma and the protective action of caeruloplasmin.
    Gutteridge JM
    J Trace Elem Electrolytes Health Dis; 1991 Dec; 5(4):279-81. PubMed ID: 1822339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron at the cell surface controls DNA synthesis in CCl 39 cells.
    Alcain FJ; Löw H; Crane FL
    Biochem Biophys Res Commun; 1994 Aug; 203(1):16-21. PubMed ID: 8074650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen catalyzed mobilization of iron from ferritin by iron(III) chelate ligands.
    Bou-Abdallah F; McNally J; Liu XX; Melman A
    Chem Commun (Camb); 2011 Jan; 47(2):731-3. PubMed ID: 21060922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.