These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 832309)

  • 1. Membrane-fusions and cytoplasmic bridges in the cells of the developing cerebellum.
    Das GD
    Cell Tissue Res; 1977 Jan; 176(4):475-92. PubMed ID: 832309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transient cytoplasmic bridges among the cells of developing cerebellum: a possible mode of induction for cell differentiation.
    Das GD
    Cell Differ; 1975 Mar; 3(6):371-7. PubMed ID: 1125983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of mitosis in the differentiating Purkinje cells of the cerebellum.
    Das GD
    Acta Anat (Basel); 1977; 97(4):435-42. PubMed ID: 857569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Similarities in the ultrastructural distribution of nerve growth factor receptor-like immunoreactivity in cerebellar Purkinje cells of the neonatal and colchicine-treated adult rat.
    Pioro EP; Ribeiro-Da-Silva A; Cuello AC
    J Comp Neurol; 1991 Mar; 305(2):189-200. PubMed ID: 1851186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphometric analyses of Purkinje and granule cells in aging F344 rats.
    Dlugos CA; Pentney RJ
    Neurobiol Aging; 1994; 15(4):435-40. PubMed ID: 7969720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression and localization of 25-Dx, a membrane-associated putative progesterone-binding protein, in the developing Purkinje cell.
    Sakamoto H; Ukena K; Takemori H; Okamoto M; Kawata M; Tsutsui K
    Neuroscience; 2004; 126(2):325-34. PubMed ID: 15207350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Derivation of cerebellar Golgi neurons from the external granular layer: evidence from explantation of external granule cells in vivo.
    Hausmann B; Mangold U; Sievers J; Berry M
    J Comp Neurol; 1985 Feb; 232(4):511-22. PubMed ID: 3920289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resting and reactive macrophages in the developing cerebellum: an experimental ultrastructural study.
    Das GD
    Virchows Arch B Cell Pathol; 1976 May; 20(4):287-98. PubMed ID: 820059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic transformation of Bergmann glial fibers proceeds in correlation with dendritic outgrowth and synapse formation of cerebellar Purkinje cells.
    Yamada K; Fukaya M; Shibata T; Kurihara H; Tanaka K; Inoue Y; Watanabe M
    J Comp Neurol; 2000 Feb; 418(1):106-20. PubMed ID: 10701759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrastructural studies on cerebellar histogenesis in the frog: the external granular layer and the molecular layer.
    Gona AG
    Brain Res; 1978 Sep; 153(3):435-47. PubMed ID: 308829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Light- and electron microscopy studies on the cerebellum in 12-day-old rats after treatment with 6-aminonicotinamide (6-AN)].
    Schaarschmidt W
    Acta Anat (Basel); 1975; 91(3):362-75. PubMed ID: 125517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatio-temporal characterization of the pleiotrophinergic system in mouse cerebellum: evidence for its key role during ontogenesis.
    Basille-Dugay M; Hamza MM; Tassery C; Parent B; Raoult E; Bénard M; Raisman-Vozari R; Vaudry D; Burel DC
    Exp Neurol; 2013 Sep; 247():537-51. PubMed ID: 23454176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of unattached spines of Purkinje cell dendrite in organotypic cultures of mouse cerebellum.
    Kim SU
    Brain Res; 1975 Apr; 88(1):52-8. PubMed ID: 1168087
    [No Abstract]   [Full Text] [Related]  

  • 14. A novel morphological technique to investigate a single climbing fibre synaptogenesis with a Purkinje cell in the developing mouse cerebellum: DiI injection into the inferior cerebellar peduncle.
    Kiyohara Y; Endo K; Ide C; Mizoguchi A
    J Electron Microsc (Tokyo); 2003; 52(3):327-35. PubMed ID: 12892223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A morphological study of incubated slices of rat cerebellum in relation to postnatal age.
    Garthwaite J; Woodhams PL; Collins MJ; Balázs R
    Dev Neurosci; 1980; 3(2):90-9. PubMed ID: 7418633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-synaptic membrane specializations on the necks of Purkinje cell dentritic spines.
    Spacek J
    J Anat; 1980 Dec; 131(Pt 4):723-9. PubMed ID: 7216908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synapse-independent and synapse-dependent apoptosis of cerebellar granule cells in postnatal rabbits occur at two subsequent but partly overlapping developmental stages.
    Lossi L; Mioletti S; Merighi A
    Neuroscience; 2002; 112(3):509-23. PubMed ID: 12074894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fine structure of rat cerebellar noradrenaline terminals as visualized by potassium permanganate 'in situ perfusion' fixation method.
    Kimoto Y; Tohyama M; Satoh K; Sakumoto T; Takahashi Y; Shimizu N
    Neuroscience; 1981; 6(1):47-58. PubMed ID: 7219705
    [No Abstract]   [Full Text] [Related]  

  • 19. Gitter cells and their relationship to macrophages in the developing cerebellum: an electron microscopic study.
    Das GD
    Virchows Arch B Cell Pathol; 1976 May; 20(4):299-305. PubMed ID: 820060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cytotoxic effect of ethylnitrosourea on the developing rat cerebellum. Morphologic observations.
    Johnson RE; Campbell RJ; Laws ER
    Acta Neuropathol; 1981; 55(4):257-61. PubMed ID: 7331769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.