BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 8323264)

  • 1. Effects of pH and acetic acid on glucose and xylose metabolism by a genetically engineered ethanologenic Escherichia coli.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 1993; 39-40():301-22. PubMed ID: 8323264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of acetic acid on xylose conversion to ethanol by genetically engineered E. coli.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 1992; 34-35():185-204. PubMed ID: 1622203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ethanol production by recombinant Escherichia coli carrying genes from Zymomonas mobilis.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 1991; 28-29():221-36. PubMed ID: 1929364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance testing of Zymomonas mobilis metabolically engineered for cofermentation of glucose, xylose, and arabinose.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 2002; 98-100():429-48. PubMed ID: 12018270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on nutrient requirements and cost-effective supplements for ethanol production by recombinant E. coli.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 1996; 57-58():307-26. PubMed ID: 8669903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae.
    Casey E; Sedlak M; Ho NW; Mosier NS
    FEMS Yeast Res; 2010 Jun; 10(4):385-93. PubMed ID: 20402796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving fermentation performance of recombinant Zymomonas in acetic acid-containing media.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 1998; 70-72():161-72. PubMed ID: 9627380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors contributing to the loss of ethanologenicity of Escherichia coli B recombinants pL0I297 and KO11.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 1996; 57-58():293-305. PubMed ID: 8669902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative energetics of glucose and xylose metabolism in ethanologenic recombinant Escherichia coli B.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 1995; 51-52():179-95. PubMed ID: 7668846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of recombinant E. coli ATCC 11303 (pLOI 297) in the conversion of cellulose and xylose to ethanol.
    Padukone N; Evans KW; McMillan JD; Wyman CE
    Appl Microbiol Biotechnol; 1995 Oct; 43(5):850-5. PubMed ID: 7576551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relative rates of sugar utilization by an ethanologenic recombinant Escherichia coli using mixtures of glucose, mannose, and xylose.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 1994; 45-46():367-81. PubMed ID: 8010766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of acetate on the growth and fermentation performance of Escherichia coli KO11.
    Takahashi CM; Takahashi DF; Carvalhal ML; Alterthum F
    Appl Biochem Biotechnol; 1999 Sep; 81(3):193-203. PubMed ID: 10652785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fermentation of biomass-derived glucuronic acid by pet expressing recombinants of E. coli B.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 1997; 63-65():221-41. PubMed ID: 9170247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a recombinant flocculent Saccharomyces cerevisiae strain that co-ferments glucose and xylose: II. influence of pH and acetic acid on ethanol production.
    Matsushika A; Sawayama S
    Appl Biochem Biotechnol; 2012 Dec; 168(8):2094-104. PubMed ID: 23076570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xylose-glucose co-fermentation to ethanol by Escherichia coli strain MS04 using single- and two-stage continuous cultures under micro-aerated conditions.
    Fernández-Sandoval MT; Galíndez-Mayer J; Bolívar F; Gosset G; Ramírez OT; Martinez A
    Microb Cell Fact; 2019 Aug; 18(1):145. PubMed ID: 31443652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of ethanol from pulp mill hardwood and softwood spent sulfite liquors by genetically engineered E. coli.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 1993; 39-40():667-85. PubMed ID: 8323269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deletion of pgi gene in E. coli increases tolerance to furfural and 5-hydroxymethyl furfural in media containing glucose-xylose mixture.
    Jilani SB; Dev C; Eqbal D; Jawed K; Prasad R; Yazdani SS
    Microb Cell Fact; 2020 Jul; 19(1):153. PubMed ID: 32723338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of seed production for a simultaneous saccharification cofermentation biomass-to-ethanol process using recombinant Zymomonas.
    Lawford HG; Rousseau JD; McMillan JD
    Appl Biochem Biotechnol; 1997; 63-65():269-86. PubMed ID: 18576087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative ethanol productivities of different Zymomonas recombinants fermenting oat hull hydrolysate.
    Lawford HG; Rousseau JD; Tolan JS
    Appl Biochem Biotechnol; 2001; 91-93():133-46. PubMed ID: 11963842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous fermentation of biomass-derived sugars to ethanol by a co-culture of an engineered Escherichia coli and Saccharomyces cerevisiae.
    Wang L; York SW; Ingram LO; Shanmugam KT
    Bioresour Technol; 2019 Feb; 273():269-276. PubMed ID: 30448678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.