BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 8323269)

  • 1. Production of ethanol from pulp mill hardwood and softwood spent sulfite liquors by genetically engineered E. coli.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 1993; 39-40():667-85. PubMed ID: 8323269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethanol production from hardwood spent sulfite liquor using an adapted strain of Pichia stipitis.
    Nigam JN
    J Ind Microbiol Biotechnol; 2001 Mar; 26(3):145-50. PubMed ID: 11420654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of acetic acid on xylose conversion to ethanol by genetically engineered E. coli.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 1992; 34-35():185-204. PubMed ID: 1622203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Xylose fermentation by genetically modified Saccharomyces cerevisiae 259ST in spent sulfite liquor.
    Helle SS; Murray A; Lam J; Cameron DR; Duff SJ
    Bioresour Technol; 2004 Apr; 92(2):163-71. PubMed ID: 14693449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutants of the pentose-fermenting yeast Pichia stipitis with improved tolerance to inhibitors in hardwood spent sulfite liquor.
    Bajwa PK; Shireen T; D'Aoust F; Pinel D; Martin VJ; Trevors JT; Lee H
    Biotechnol Bioeng; 2009 Dec; 104(5):892-900. PubMed ID: 19557723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of industrial yeast strains for fermentation of spent sulphite pulping liquor fortified with wood hydrolysate.
    Smith MT; Cameron DR; Duff SJ
    J Ind Microbiol Biotechnol; 1997 Jan; 18(1):18-21. PubMed ID: 9079283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutants of the pentose-fermenting yeast Pachysolen tannophilus tolerant to hardwood spent sulfite liquor and acetic acid.
    Harner NK; Bajwa PK; Habash MB; Trevors JT; Austin GD; Lee H
    Antonie Van Leeuwenhoek; 2014 Jan; 105(1):29-43. PubMed ID: 24122119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds.
    Keating JD; Panganiban C; Mansfield SD
    Biotechnol Bioeng; 2006 Apr; 93(6):1196-206. PubMed ID: 16470880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An ethanologenic yeast exhibiting unusual metabolism in the fermentation of lignocellulosic hexose sugars.
    Keating JD; Robinson J; Cotta MA; Saddler JN; Mansfield SD
    J Ind Microbiol Biotechnol; 2004 Jun; 31(5):235-44. PubMed ID: 15252719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-fermentation of hexose and pentose sugars in a spent sulfite liquor matrix with genetically modified Saccharomyces cerevisiae.
    Novy V; Krahulec S; Longus K; Klimacek M; Nidetzky B
    Bioresour Technol; 2013 Feb; 130():439-48. PubMed ID: 23313691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational and evolutionary engineering of Saccharomyces cerevisiae for production of dicarboxylic acids from lignocellulosic biomass and exploring genetic mechanisms of the yeast tolerance to the biomass hydrolysate.
    Stovicek V; Dato L; Almqvist H; Schöpping M; Chekina K; Pedersen LE; Koza A; Figueira D; Tjosås F; Ferreira BS; Forster J; Lidén G; Borodina I
    Biotechnol Biofuels Bioprod; 2022 Feb; 15(1):22. PubMed ID: 35219341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fermentation kinetics for xylitol production by a Pichia stipitis D: -xylulokinase mutant previously grown in spent sulfite liquor.
    Rodrigues RC; Lu C; Lin B; Jeffries TW
    Appl Biochem Biotechnol; 2008 Mar; 148(1-3):199-209. PubMed ID: 18418752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ethanol production by recombinant Escherichia coli carrying genes from Zymomonas mobilis.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 1991; 28-29():221-36. PubMed ID: 1929364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Saccharomyces cerevisiae genome shuffling through recursive population mating leads to improved tolerance to spent sulfite liquor.
    Pinel D; D'Aoust F; del Cardayre SB; Bajwa PK; Lee H; Martin VJ
    Appl Environ Microbiol; 2011 Jul; 77(14):4736-43. PubMed ID: 21622800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors contributing to the loss of ethanologenicity of Escherichia coli B recombinants pL0I297 and KO11.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 1996; 57-58():293-305. PubMed ID: 8669902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptation of Saccharomyces cerevisiae in a concentrated spent sulphite liquor waste stream for increased inhibitor resistance.
    Brandt BA; García-Aparicio MP; Görgens JF; van Zyl WH
    Appl Microbiol Biotechnol; 2022 Jan; 106(1):455-468. PubMed ID: 34870737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on nutrient requirements and cost-effective supplements for ethanol production by recombinant E. coli.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 1996; 57-58():307-26. PubMed ID: 8669903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of cell recycling in continuous fermentation of enzymatic hydrolysates of spruce with Saccharomyces cerevisiae and on-line monitoring of glucose and ethanol.
    Palmqvist E; Galbe M; Hahn-Hägerdal B
    Appl Microbiol Biotechnol; 1998 Nov; 50(5):545-51. PubMed ID: 9866172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of mycelium biomass and ethanol from paper pulp sulfite liquor by Rhizopus oryzae.
    Taherzadeh MJ; Fox M; Hjorth H; Edebo L
    Bioresour Technol; 2003 Jul; 88(3):167-77. PubMed ID: 12618037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain improvement of the pentose-fermenting yeast Pichia stipitis by genome shuffling.
    Bajwa PK; Pinel D; Martin VJ; Trevors JT; Lee H
    J Microbiol Methods; 2010 May; 81(2):179-86. PubMed ID: 20298725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.