BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 8323269)

  • 21. Effects of pH and acetic acid on glucose and xylose metabolism by a genetically engineered ethanologenic Escherichia coli.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 1993; 39-40():301-22. PubMed ID: 8323264
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ethanol production from dilute-Acid softwood hydrolysate by co-culture.
    Qian M; Tian S; Li X; Zhang J; Pan Y; Yang X
    Appl Biochem Biotechnol; 2006 Sep; 134(3):273-84. PubMed ID: 16960285
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient conversion of hemicellulose sugars from spent sulfite liquor into optically pure L-lactic acid by Enterococcus mundtii.
    Hoheneder R; Fitz E; Bischof RH; Russmayer H; Ferrero P; Peacock S; Sauer M
    Bioresour Technol; 2021 Aug; 333():125215. PubMed ID: 33964599
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fermentation of biomass-derived glucuronic acid by pet expressing recombinants of E. coli B.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 1997; 63-65():221-41. PubMed ID: 9170247
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cellulosic fuel ethanol: alternative fermentation process designs with wild-type and recombinant Zymomonas mobilis.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 2003; 105 -108():457-69. PubMed ID: 12721468
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ethanol production from corn cob hydrolysates by Escherichia coli KO11.
    de Carvalho Lima KG; Takahashi CM; Alterthum F
    J Ind Microbiol Biotechnol; 2002 Sep; 29(3):124-8. PubMed ID: 12242633
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ethanol from lignocellulosic wastes with utilization of recombinant bacteria.
    Katzen R; Fowler DE
    Appl Biochem Biotechnol; 1994; 45-46():697-707. PubMed ID: 8010771
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ethanol production from wood hydrolysate using genetically engineered Zymomonas mobilis.
    Yanase H; Miyawaki H; Sakurai M; Kawakami A; Matsumoto M; Haga K; Kojima M; Okamoto K
    Appl Microbiol Biotechnol; 2012 Jun; 94(6):1667-78. PubMed ID: 22573268
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway.
    Ko JK; Um Y; Woo HM; Kim KH; Lee SM
    Bioresour Technol; 2016 Jun; 209():290-6. PubMed ID: 26990396
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Second-generation bioethanol from eucalypt sulphite spent liquor.
    Xavier AM; Correia MF; Pereira SR; Evtuguin DV
    Bioresour Technol; 2010 Apr; 101(8):2755-61. PubMed ID: 20045313
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biological treatment of eucalypt spent sulphite liquors: a way to boost the production of second generation bioethanol.
    Pereira SR; IvanuĊĦa S; Evtuguin DV; Serafim LS; Xavier AM
    Bioresour Technol; 2012 Jan; 103(1):131-5. PubMed ID: 22019265
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of white-rot and soft-rot fungi increasing ethanol production from spent sulfite liquor in co-culture with Saccharomyces cerevisiae.
    Holmgren M; Sellstedt A
    J Appl Microbiol; 2008 Jul; 105(1):134-40. PubMed ID: 18248376
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ethanol production from residual wood chips of cellulose industry: acid pretreatment investigation, hemicellulosic hydrolysate fermentation, and remaining solid fraction fermentation by SSF process.
    Silva NL; Betancur GJ; Vasquez MP; Gomes Ede B; Pereira N
    Appl Biochem Biotechnol; 2011 Apr; 163(7):928-36. PubMed ID: 20890779
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High titer ethanol production from SPORL-pretreated lodgepole pine by simultaneous enzymatic saccharification and combined fermentation.
    Lan TQ; Gleisner R; Zhu JY; Dien BS; Hector RE
    Bioresour Technol; 2013 Jan; 127():291-7. PubMed ID: 23138055
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improving fermentation performance of recombinant Zymomonas in acetic acid-containing media.
    Lawford HG; Rousseau JD
    Appl Biochem Biotechnol; 1998; 70-72():161-72. PubMed ID: 9627380
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biological conversion of lignocellulosic biomass to ethanol.
    Lee J
    J Biotechnol; 1997 Jul; 56(1):1-24. PubMed ID: 9246788
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis-NCIM 3498.
    Gupta R; Sharma KK; Kuhad RC
    Bioresour Technol; 2009 Feb; 100(3):1214-20. PubMed ID: 18835157
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Repeated-batch fermentations of xylose and glucose-xylose mixtures using a respiration-deficient Saccharomyces cerevisiae engineered for xylose metabolism.
    Kim SR; Lee KS; Choi JH; Ha SJ; Kweon DH; Seo JH; Jin YS
    J Biotechnol; 2010 Nov; 150(3):404-7. PubMed ID: 20933550
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of xylose-fermenting yeast Pichia stipitis for ethanol production through adaptation on hardwood hemicellulose acid prehydrolysate.
    Nigam JN
    J Appl Microbiol; 2001 Feb; 90(2):208-15. PubMed ID: 11168723
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products.
    Pan X; Arato C; Gilkes N; Gregg D; Mabee W; Pye K; Xiao Z; Zhang X; Saddler J
    Biotechnol Bioeng; 2005 May; 90(4):473-81. PubMed ID: 15772945
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.