BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 8323297)

  • 1. Kinetic study of the alpha-chymotrypsin-catalyzed hydrolysis and synthesis of a peptide bond in a monophasic aqueous/organic reaction medium.
    Deschrevel B; Vincent JC; Thellier M
    Arch Biochem Biophys; 1993 Jul; 304(1):45-52. PubMed ID: 8323297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic parameters monitoring the equilibrium shift of enzyme-catalyzed hydrolysis/synthesis reactions in favor of synthesis in mixtures of water and organic solvent.
    Deschrevel B; Vincent JC; Ripoll C; Thellier M
    Biotechnol Bioeng; 2003 Jan; 81(2):167-77. PubMed ID: 12451553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peptide synthesis catalyzed by polyethylene glycol-modified chymotrypsin in organic solvents.
    Gaertner HF; Puigserver AJ
    Proteins; 1988; 3(2):130-7. PubMed ID: 3399494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic analysis of deactivation of immobilized alpha-chymotrypsin by water-miscible organic solvent in kyotorphin synthesis.
    Levitsky VY; Lozano P; Iborra JL
    Biotechnol Bioeng; 1999 Oct; 65(2):170-5. PubMed ID: 10458737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gram-scale enzymatic synthesis of a peptide bond.
    Deschrevel B; Dugast JY; Vincent JC
    C R Acad Sci III; 1992; 314(11):519-25. PubMed ID: 1521172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solid-phase peptide synthesis by ion-paired alpha-chymotrypsin in nonaqueous media.
    Altreuter DH; Dordick JS; Clark DS
    Biotechnol Bioeng; 2003 Mar; 81(7):809-17. PubMed ID: 12557314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptide synthesis in organic solvents with an immobilized enzyme.
    Nakanisi K; Nagayasu T
    Biomed Biochim Acta; 1991; 50(10-11):S50-4. PubMed ID: 1820060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protease-catalyzed peptide synthesis in frozen aqueous systems: the "freeze-concentration model".
    Schuster M; Aaviksaar A; Haga M; Ullmann U; Jakubke HD
    Biomed Biochim Acta; 1991; 50(10-11):S84-9. PubMed ID: 1820066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of N-glutaryl-L-phenylalanine p-nitroanilide hydrolysis catalyzed by alpha-chymotrypsin in aqueous solutions of dodecyltrimethylammonium bromide.
    Abuin E; Lissi E; Duarte R
    J Colloid Interface Sci; 2005 Mar; 283(2):539-43. PubMed ID: 15721931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipase kinetics in organic-water solvent with amphipathic substrate for chiral reaction.
    Mohapatra SC; Hsu JT
    Biotechnol Bioeng; 1997 Jul; 55(2):399-407. PubMed ID: 18636498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the influence of temperature change and cosolvent addition on conversion rate of enzymatic suspension reactions based on regime analysis.
    Wolff A; Zhu L; Wong YW; Straathof AJ; Jongejan JA; Heijnen JJ
    Biotechnol Bioeng; 1999 Jan; 62(2):125-34. PubMed ID: 10099521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sono-enzymatic peptide synthesis in organic solvent.
    Fulcrand-Rolland V; Duc Hua T; Lazaro R; Viallefont P
    Biomed Biochim Acta; 1991; 50(10-11):S213-6. PubMed ID: 1820049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptide synthesis in aqueous environments: the role of extreme conditions on peptide bond formation and peptide hydrolysis.
    Schreiner E; Nair NN; Marx D
    J Am Chem Soc; 2009 Sep; 131(38):13668-75. PubMed ID: 19725519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chymotrypsin-catalyzed peptide synthesis in an acetonitrile-water-system: studies on the efficiency of nucleophiles.
    Fischer U; Zeitschel U; Jakubke HD
    Biomed Biochim Acta; 1991; 50(10-11):S131-5. PubMed ID: 1820034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-solvent effects on reaction rate and reaction equilibrium of an enzymatic peptide hydrolysis.
    Wangler A; Canales R; Held C; Luong TQ; Winter R; Zaitsau DH; Verevkin SP; Sadowski G
    Phys Chem Chem Phys; 2018 Apr; 20(16):11317-11326. PubMed ID: 29637955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate desolvation as a governing factor in enzymatic transformations of PAHs in aqueous-acetonitrile mixtures.
    Borole AP; Cheng CL; Davison BH
    Biotechnol Prog; 2004; 20(4):1251-4. PubMed ID: 15296456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptide synthesis of aspartame precursor using organic-solvent-stable PST-01 protease in monophasic aqueous-organic solvent systems.
    Tsuchiyama S; Doukyu N; Yasuda M; Ishimi K; Ogino H
    Biotechnol Prog; 2007; 23(4):820-3. PubMed ID: 17480054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined co-solvent and pressure effect on kinetics of a peptide hydrolysis: an activity-based approach.
    Knierbein M; Wangler A; Luong TQ; Winter R; Held C; Sadowski G
    Phys Chem Chem Phys; 2019 Oct; 21(40):22224-22229. PubMed ID: 31576857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic properties of alpha-chymotrypsin in organic media.
    Adlercreutz P; Clapés P
    Biomed Biochim Acta; 1991; 50(10-11):S55-60. PubMed ID: 1820061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the relationship between the activity and structure of PEG-alpha-chymotrypsin conjugates in organic solvents.
    Castillo B; Méndez J; Al-Azzam W; Barletta G; Griebenow K
    Biotechnol Bioeng; 2006 Jun; 94(3):565-74. PubMed ID: 16496401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.