BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 8323528)

  • 1. Mechanism of cleavage at Asn 148 during the maturation of jack bean concanavalin A.
    Brennan TV; Clarke S
    Biochem Biophys Res Commun; 1993 Jun; 193(3):1031-7. PubMed ID: 8323528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational study on nonenzymatic peptide bond cleavage at asparagine and aspartic acid.
    Catak S; Monard G; Aviyente V; Ruiz-López MF
    J Phys Chem A; 2008 Sep; 112(37):8752-61. PubMed ID: 18714962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Posttranslational processing of concanavalin A precursors in jackbean cotyledons.
    Bowles DJ; Marcus SE; Pappin DJ; Findlay JB; Eliopoulos E; Maycox PR; Burgess J
    J Cell Biol; 1986 Apr; 102(4):1284-97. PubMed ID: 3958046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Post-translational peptide bond formation during concanavalin A processing in vitro.
    Sheldon PS; Keen JN; Bowles DJ
    Biochem J; 1996 Dec; 320 ( Pt 3)(Pt 3):865-70. PubMed ID: 9003373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteolytic fragmentation reveals the oligomeric and domain structure of porcine aminopeptidase A.
    Hesp JR; Hooper NM
    Biochemistry; 1997 Mar; 36(10):3000-7. PubMed ID: 9062131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular cloning and characterization of a cDNA encoding asparaginyl endopeptidase from sweet potato (Ipomoea batatas (L.) Lam) senescent leaves.
    Chen HJ; Hou WC; Liu JS; Yang CY; Huang DJ; Lin YH
    J Exp Bot; 2004 Apr; 55(398):825-35. PubMed ID: 14990624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energetics and dynamics of the fragmentation reactions of protonated peptides containing methionine sulfoxide or aspartic acid via energy- and time-resolved surface induced dissociation.
    Lioe H; Laskin J; Reid GE; O'Hair RA
    J Phys Chem A; 2007 Oct; 111(42):10580-8. PubMed ID: 17914758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous cyclization of polypeptides with a penultimate Asp, Asn or isoAsp at the N-terminus and implications for cleavage by aminopeptidase.
    Lyons B; Kwan AH; Truscott R
    FEBS J; 2014 Jul; 281(13):2945-55. PubMed ID: 24809618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of human prolegumain by cleavage at a C-terminal asparagine residue.
    Chen JM; Fortunato M; Barrett AJ
    Biochem J; 2000 Dec; 352 Pt 2(Pt 2):327-34. PubMed ID: 11085925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined use of platinum(II) complexes and palladium(II) complexes for selective cleavage of peptides and proteins.
    Milović NM; Dutca LM; Kostić NM
    Inorg Chem; 2003 Jun; 42(13):4036-45. PubMed ID: 12817959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CTL recognition of an altered peptide associated with asparagine bond rearrangement. Implications for immunity and vaccine design.
    Chen W; Ede NJ; Jackson DC; McCluskey J; Purcell AW
    J Immunol; 1996 Aug; 157(3):1000-5. PubMed ID: 8757603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rearrangement of terminal amino acid residues in peptides by protease-catalyzed intramolecular transpeptidation.
    Fodor S; Zhang Z
    Anal Biochem; 2006 Sep; 356(2):282-90. PubMed ID: 16859627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deglycosylation is necessary but not sufficient for activation of proconcanavalin A.
    Ramis C; Gomord V; Lerouge P; Faye L
    J Exp Bot; 2001 May; 52(358):911-7. PubMed ID: 11432908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. C-terminal amino acid residue loss for deprotonated peptide ions containing glutamic acid, aspartic acid, or serine residues at the C-terminus.
    Li Z; Yalcin T; Cassady CJ
    J Mass Spectrom; 2006 Jul; 41(7):939-49. PubMed ID: 16810639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of succinimide sites in proteins by N-terminal sequence analysis after alkaline hydroxylamine cleavage.
    Kwong MY; Harris RJ
    Protein Sci; 1994 Jan; 3(1):147-9. PubMed ID: 8142891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling protein splicing: reaction pathway for C-terminal splice and intein scission.
    Mujika JI; Lopez X; Mulholland AJ
    J Phys Chem B; 2009 Apr; 113(16):5607-16. PubMed ID: 19326906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein splicing: evidence for an N-O acyl rearrangement as the initial step in the splicing process.
    Shao Y; Xu MQ; Paulus H
    Biochemistry; 1996 Mar; 35(12):3810-5. PubMed ID: 8620003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Post-translational modifications of aquaporin 0 (AQP0) in the normal human lens: spatial and temporal occurrence.
    Ball LE; Garland DL; Crouch RK; Schey KL
    Biochemistry; 2004 Aug; 43(30):9856-65. PubMed ID: 15274640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis of the water-assisted asparagine recognition by asparaginyl-tRNA synthetase.
    Iwasaki W; Sekine S; Kuroishi C; Kuramitsu S; Shirouzu M; Yokoyama S
    J Mol Biol; 2006 Jul; 360(2):329-42. PubMed ID: 16753178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of a slow processing precursor penicillin acylase from Escherichia coli reveals the linker peptide blocking the active-site cleft.
    Hewitt L; Kasche V; Lummer K; Lewis RJ; Murshudov GN; Verma CS; Dodson GG; Wilson KS
    J Mol Biol; 2000 Sep; 302(4):887-98. PubMed ID: 10993730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.