These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 8323882)

  • 1. Convective and diffusive transport of plasma proteins across the walls of large blood vessels.
    Lever MJ; Jay MT
    Front Med Biol Eng; 1993; 5(1):45-50. PubMed ID: 8323882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasma protein entry and retention in the vascular wall: possible factors in atherogenesis.
    Lever MJ; Jay MT; Coleman PJ
    Can J Physiol Pharmacol; 1996 Jul; 74(7):818-23. PubMed ID: 8946068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational modeling of LDL and albumin transport in an in vivo CT image-based human right coronary artery.
    Sun N; Torii R; Wood NB; Hughes AD; Thom SA; Xu XY
    J Biomech Eng; 2009 Feb; 131(2):021003. PubMed ID: 19102562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Passage of extravascular tracers into canine jugular veins and carotid arteries.
    Stewart GJ; Stewart DD; Philbin JF; Stern HS
    J Lab Clin Med; 1980 Aug; 96(2):285-98. PubMed ID: 7400663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical study on flow-dependent concentration polarization of low density lipoproteins at the luminal surface of a straight artery.
    Wada S; Karino T
    Biorheology; 1999; 36(3):207-23. PubMed ID: 10690269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow-dependent concentration polarization of plasma proteins at the luminal surface of a semipermeable membrane.
    Naiki T; Karino T
    Biorheology; 1999; 36(3):243-56. PubMed ID: 10690271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluid and protein fluxes across small and large pores in the microvasculature. Application of two-pore equations.
    Rippe B; Haraldsson B
    Acta Physiol Scand; 1987 Nov; 131(3):411-28. PubMed ID: 3321914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous fluid transport across isolated rabbit and bovine ciliary body preparations.
    Candia OA; To CH; Gerometta RM; Zamudio AC
    Invest Ophthalmol Vis Sci; 2005 Mar; 46(3):939-47. PubMed ID: 15728551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport in rat vessel walls. II. Macromolecular leakage and focal spot size growth in rat arteries and veins.
    Shou Y; Jan KM; Rumschitzki DS
    Am J Physiol Heart Circ Physiol; 2007 Jun; 292(6):H2881-90. PubMed ID: 17209003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of fluid movement and particle diffusion across capillary walls.
    Salathé EP; Venkataraman R
    J Biomech Eng; 1982 Feb; 104(1):57-62. PubMed ID: 6281577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow-dependent concentration polarization of plasma proteins at the luminal surface of a cultured endothelial cell monolayer.
    Naiki T; Sugiyama H; Tashiro R; Karino T
    Biorheology; 1999; 36(3):225-41. PubMed ID: 10690270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The effect of nafarin and vikasol on bioelectric manifestations in blood and vessel walls].
    Voronkov IF
    Farmakol Toksikol; 1973; 36(3):329-32. PubMed ID: 4788495
    [No Abstract]   [Full Text] [Related]  

  • 13. Mass transport in arteries and the localization of atherosclerosis.
    Tarbell JM
    Annu Rev Biomed Eng; 2003; 5():79-118. PubMed ID: 12651738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Albumin and Cr-EDTA uptake by systemic arteries, veins, and pulmonary artery of rabbit.
    Lever MJ; Jay MT
    Arteriosclerosis; 1990; 10(4):551-8. PubMed ID: 2114866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of blood coagulation activity on the transmural potential of vessel walls].
    Markosian AA; Chepurov AK
    Fiziol Zh SSSR Im I M Sechenova; 1970 Oct; 56(10):1451-6. PubMed ID: 5502682
    [No Abstract]   [Full Text] [Related]  

  • 16. [Significance of the coagulation and fibrinolytic parameters as predictors for carotid atherosclerosis].
    Nomura E; Kohriyama T; Yamaguchi S; Kajikawa H; Nakamura S
    Rinsho Shinkeigaku; 1996 Jun; 36(6):741-5. PubMed ID: 8937194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Dynamics of albumin transport across the venule walls of the rat mesentery].
    Zaĭtsev KT
    Biull Eksp Biol Med; 1989 Nov; 108(11):522-6. PubMed ID: 2633809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiphysics simulation of blood flow and LDL transport in a porohyperelastic arterial wall model.
    Koshiba N; Ando J; Chen X; Hisada T
    J Biomech Eng; 2007 Jun; 129(3):374-85. PubMed ID: 17536904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Permeability of the arterial vessel wall for labeled plasma proteins].
    Fuchs U; Jobst M; Gepp G; Gottschild D
    Z Gesamte Inn Med; 1978 Sep; 33(17):602-4. PubMed ID: 100978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors influencing the uptake of atherogenic plasma proteins by artery walls.
    Born GV; Medina R; Shafi S; Cardona-Sanclemente LE
    Biorheology; 2003; 40(1-3):13-22. PubMed ID: 12454382
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.