BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

485 related articles for article (PubMed ID: 8323883)

  • 1. Fundamental flow studies in models of human arteries.
    Liepsch D
    Front Med Biol Eng; 1993; 5(1):51-5. PubMed ID: 8323883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental flow studies in an elastic Y-model.
    Mijovic B; Liepsch D
    Technol Health Care; 2003; 11(2):115-41. PubMed ID: 12697953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of blood flow parameters on flow patterns at arterial bifurcations--studies in models.
    Liepsch DW
    Monogr Atheroscler; 1990; 15():63-76. PubMed ID: 2404201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The dynamics of pulsatile flow in distensible model arteries.
    Liepsch DW; Zimmer R
    Technol Health Care; 1995 Dec; 3(3):185-99. PubMed ID: 8749865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biofluid dynamics at arterial bifurcations.
    Lou Z; Yang WJ
    Crit Rev Biomed Eng; 1992; 19(6):455-93. PubMed ID: 1395653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical investigation of the non-Newtonian pulsatile blood flow in a bifurcation model with a non-planar branch.
    Chen J; Lu XY
    J Biomech; 2006; 39(5):818-32. PubMed ID: 16488221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pulsatile flow of non-Newtonian fluid in distensible models of human arteries.
    Liepsch D; Moravec S
    Biorheology; 1984; 21(4):571-86. PubMed ID: 6487768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport phenomena in pulsating post-stenotic vortex flow in arteries. An interactive concept of fluid-dynamic, haemorheological and biochemical processes in white thrombus formation.
    Schmid-Schönbein H; Wurzinger LJ
    Nouv Rev Fr Hematol (1978); 1986; 28(5):257-67. PubMed ID: 3543838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of blood viscoelasticity on pulsatile flow in stationary and axially moving tubes.
    Sharp MK; Thurston GB; Moore JE
    Biorheology; 1996; 33(3):185-208. PubMed ID: 8935179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical investigation of the non-Newtonian blood flow in a bifurcation model with a non-planar branch.
    Chen J; Lu XY
    J Biomech; 2004 Dec; 37(12):1899-911. PubMed ID: 15519598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computation of flow fields and shear rates in an aortic bifurcation.
    Lee D; Chiu JJ
    Front Med Biol Eng; 1993; 5(1):23-9. PubMed ID: 8323879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution.
    Kabinejadian F; Ghista DN
    Med Eng Phys; 2012 Sep; 34(7):860-72. PubMed ID: 22032834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Particle image velocimetry in measuring the flow fields distribution in carotid artery bifurcation model].
    Yu F; Shi Y; Deng W; Chen H; An Q; Guo Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):104-9. PubMed ID: 17333901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical events within the arterial wall: The dynamic context for elastin fatigue.
    Hodis S; Zamir M
    J Biomech; 2009 May; 42(8):1010-6. PubMed ID: 19386312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of pulsatile blood flow in constricted bifurcated arteries with vorticity-stream function approach.
    Chakravarty S; Sen S
    J Med Eng Technol; 2008; 32(1):10-22. PubMed ID: 18183516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blood flow in compliant arteries: an effective viscoelastic reduced model, numerics, and experimental validation.
    Canić S; Hartley CJ; Rosenstrauch D; Tambaca J; Guidoboni G; Mikelić A
    Ann Biomed Eng; 2006 Apr; 34(4):575-92. PubMed ID: 16550449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Principal stress analysis in LDA measurement of the flow field downstream of 19-mm Sorin Bicarbon heart valve.
    Barbaro V; Grigioni M; Daniele C; D'Avenio G
    Technol Health Care; 1998 Nov; 6(4):259-70. PubMed ID: 9924953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Breaking symmetry in non-planar bifurcations: distribution of flow and wall shear stress.
    Lu Y; Lu X; Zhuang L; Wang W
    Biorheology; 2002; 39(3-4):431-6. PubMed ID: 12122263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High Reynolds number flow in tubes of complex geometry with application to wall shear stress in arteries.
    Pedley TJ
    Symp Soc Exp Biol; 1995; 49():219-41. PubMed ID: 8571226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Blood and arterial wall rheology and cardiovascular risk factors].
    Levenson J; Del-Pino M; Simon A
    J Mal Vasc; 2000 Oct; 25(4):237-40. PubMed ID: 11060417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.