BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 8323945)

  • 1. Interactions of Laurdan with phosphatidylcholine liposomes: a high pressure FTIR study.
    Chong PL; Wong PT
    Biochim Biophys Acta; 1993 Jul; 1149(2):260-6. PubMed ID: 8323945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of hydrostatic pressure on the location of PRODAN in lipid bilayers: a FT-IR study.
    Chong PL; Capes S; Wong PT
    Biochemistry; 1989 Oct; 28(21):8358-63. PubMed ID: 2605189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pressure-induced phase transitions of lipid bilayers observed by fluorescent probes Prodan and Laurdan.
    Kusube M; Tamai N; Matsuki H; Kaneshina S
    Biophys Chem; 2005 Oct; 117(3):199-206. PubMed ID: 15961215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of ethanol-induced lipid interdigitation on the membrane solubility of Prodan, Acdan, and Laurdan.
    Zeng J; Chong PL
    Biophys J; 1995 Feb; 68(2):567-73. PubMed ID: 7696509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: A two-photon fluorescence microscopy study.
    Bagatolli LA; Gratton E
    Biophys J; 2000 Jul; 79(1):434-47. PubMed ID: 10866969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of hydrostatic pressure on the location of PRODAN in lipid bilayers and cellular membranes.
    Chong PL
    Biochemistry; 1988 Jan; 27(1):399-404. PubMed ID: 3349041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphatidylinositol induces fluid phase formation and packing defects in phosphatidylcholine model membranes.
    Peng A; Pisal DS; Doty A; Balu-Iyer SV
    Chem Phys Lipids; 2012 Jan; 165(1):15-22. PubMed ID: 22024173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase transition affects energy transfer efficiency in phospholipid vesicles.
    Kozyra KA; Heldt JR; Engelke M; Diehl HA
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Apr; 61(6):1153-61. PubMed ID: 15741115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of pressure on the Prodan fluorescence in bilayer membranes of phospholipids with varying acyl chain lengths.
    Kusube M; Matsuki H; Kaneshina S
    Colloids Surf B Biointerfaces; 2005 Apr; 42(1):79-88. PubMed ID: 15784329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orientation of Laurdan in Phospholipid Bilayers Influences Its Fluorescence: Quantum Mechanics and Classical Molecular Dynamics Study.
    Wasif Baig M; Pederzoli M; Jurkiewicz P; Cwiklik L; Pittner J
    Molecules; 2018 Jul; 23(7):. PubMed ID: 30011800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perturbation of the chain melting transition of DPPC by galactose, agarose and Laurdan as determined by differential scanning calorimetry.
    Abrams SB; Yager P
    Biochim Biophys Acta; 1993 Feb; 1146(1):127-35. PubMed ID: 8443219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of palmitoyl phosphatidylcholine, sphingomyelin, and dihydrosphingomyelin bilayer membranes as reported by different fluorescent reporter molecules.
    Nyholm T; Nylund M; Söderholm A; Slotte JP
    Biophys J; 2003 Feb; 84(2 Pt 1):987-97. PubMed ID: 12547780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-photon fluorescence microscopy studies of bipolar tetraether giant liposomes from thermoacidophilic archaebacteria Sulfolobus acidocaldarius.
    Bagatolli L; Gratton E; Khan TK; Chong PL
    Biophys J; 2000 Jul; 79(1):416-25. PubMed ID: 10866967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of prenylated chalcones and flavanones from common hop with phosphatidylcholine model membranes.
    Wesołowska O; Gąsiorowska J; Petrus J; Czarnik-Matusewicz B; Michalak K
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):173-84. PubMed ID: 24060562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface properties of cholesterol-containing membranes detected by Prodan fluorescence.
    Krasnowska EK; Bagatolli LA; Gratton E; Parasassi T
    Biochim Biophys Acta; 2001 Apr; 1511(2):330-40. PubMed ID: 11286976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence.
    Parasassi T; De Stasio G; d'Ubaldo A; Gratton E
    Biophys J; 1990 Jun; 57(6):1179-86. PubMed ID: 2393703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model for the interaction of 6-lauroyl-2-(N,N-dimethylamino)naphthalene with lipid environments: implications for spectral properties.
    Bagatolli LA; Parasassi T; Fidelio GD; Gratton E
    Photochem Photobiol; 1999 Oct; 70(4):557-64. PubMed ID: 10546552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prodan as a membrane surface fluorescence probe: partitioning between water and phospholipid phases.
    Krasnowska EK; Gratton E; Parasassi T
    Biophys J; 1998 Apr; 74(4):1984-93. PubMed ID: 9545057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial creatine kinase binding to phospholipids decreases fluidity of membranes and promotes new lipid-induced beta structures as monitored by red edge excitation shift, laurdan fluorescence, and FTIR.
    Granjon T; Vacheron MJ; Vial C; Buchet R
    Biochemistry; 2001 May; 40(20):6016-26. PubMed ID: 11352737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two photon fluorescence microscopy of coexisting lipid domains in giant unilamellar vesicles of binary phospholipid mixtures.
    Bagatolli LA; Gratton E
    Biophys J; 2000 Jan; 78(1):290-305. PubMed ID: 10620293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.