These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 8324056)

  • 1. A model for feature linking via collective oscillations in the primary visual cortex.
    Chawanya T; Aoyagi T; Nishikawa I; Okuda K; Kuramoto Y
    Biol Cybern; 1993; 68(6):483-90. PubMed ID: 8324056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model for neuronal oscillations in the visual cortex. 2. Phase description of the feature dependent synchronization.
    Schuster HG; Wagner P
    Biol Cybern; 1990; 64(1):83-5. PubMed ID: 2285763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical and experimental studies of relationship between pinwheel centers and ocular dominance columns in the visual cortex.
    Nakagama H; Tani T; Tanaka S
    Neurosci Res; 2006 Aug; 55(4):370-82. PubMed ID: 16780978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective visual attention in a neurocomputational model of phase oscillators.
    Wu Z; Guo A
    Biol Cybern; 1999 Mar; 80(3):205-14. PubMed ID: 10192903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synaptic origin and stimulus dependency of neuronal oscillatory activity in the primary visual cortex of the cat.
    Bringuier V; Frégnac Y; Baranyi A; Debanne D; Shulz DE
    J Physiol; 1997 May; 500 ( Pt 3)(Pt 3):751-74. PubMed ID: 9161989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-linear dynamics of columns of cat visual cortex revealed by simulation and experiment.
    Spekreijse H; van Dijk BW; Kalitzin SN; Vijn PC
    Ciba Found Symp; 1994; 184():88-99; discussion 99-103, 120-8. PubMed ID: 7882763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex.
    Gray CM; Singer W
    Proc Natl Acad Sci U S A; 1989 Mar; 86(5):1698-702. PubMed ID: 2922407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties.
    Gray CM; König P; Engel AK; Singer W
    Nature; 1989 Mar; 338(6213):334-7. PubMed ID: 2922061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptation without Plasticity.
    Quiroga MDM; Morris AP; Krekelberg B
    Cell Rep; 2016 Sep; 17(1):58-68. PubMed ID: 27681421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchronisation hubs in the visual cortex may arise from strong rhythmic inhibition during gamma oscillations.
    Folias SE; Yu S; Snyder A; Nikolić D; Rubin JE
    Eur J Neurosci; 2013 Sep; 38(6):2864-83. PubMed ID: 23837724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning distinct and complementary feature selectivities from natural colour videos.
    Einhäuser W; Kayser C; Körding KP; König P
    Rev Neurosci; 2003; 14(1-2):43-52. PubMed ID: 12929917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Competitive dynamics in cortical responses to visual stimuli.
    Moldakarimov S; Rollenhagen JE; Olson CR; Chow CC
    J Neurophysiol; 2005 Nov; 94(5):3388-96. PubMed ID: 15944239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oscillatory and non-oscillatory synchronizations in the visual cortex and their possible roles in associations of visual features.
    Eckhorn R
    Prog Brain Res; 1994; 102():405-26. PubMed ID: 7800830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuroscience. Noise makes sense in neuronal computing.
    Volgushev M; Eysel UT
    Science; 2000 Dec; 290(5498):1908-9. PubMed ID: 11187048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic modification of cortical orientation tuning mediated by recurrent connections.
    Felsen G; Shen YS; Yao H; Spor G; Li C; Dan Y
    Neuron; 2002 Dec; 36(5):945-54. PubMed ID: 12467597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model for neuronal oscillations in the visual cortex. 1. Mean-field theory and derivation of the phase equations.
    Schuster HG; Wagner P
    Biol Cybern; 1990; 64(1):77-82. PubMed ID: 2285762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational modeling of the dynamics of simple and complex cells in primary visual cortex.
    Tao L; Cai D
    Sheng Li Xue Bao; 2011 Oct; 63(5):401-11. PubMed ID: 22002231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced adaptation of visual cortical cells to visual stimulation in aged cats.
    Hua T; Li G; Tang C; Wang Z; Chang S
    Neurosci Lett; 2009 Feb; 451(1):25-8. PubMed ID: 19121368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A biologically motivated and analytically soluble model of collective oscillations in the cortex. II. Application to binding and pattern segmentation.
    Ritz R; Gerstner W; Fuentes U; van Hemmen JL
    Biol Cybern; 1994; 71(4):349-58. PubMed ID: 7948226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding by temporal structure in multiple feature domains of an oscillatory neuronal network.
    Schillen TB; König P
    Biol Cybern; 1994; 70(5):397-405. PubMed ID: 8186300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.