These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 8324058)
1. Equilibrium point control of a monkey arm simulator by a fast learning tree structured artificial neural network. Dornay M; Sanger TD Biol Cybern; 1993; 68(6):499-508. PubMed ID: 8324058 [TBL] [Abstract][Full Text] [Related]
2. Kinematic construction of the trajectory of sequential arm movements. Okadome T; Honda M Biol Cybern; 1999 Mar; 80(3):157-69. PubMed ID: 10192899 [TBL] [Abstract][Full Text] [Related]
3. Cerebellar learning of accurate predictive control for fast-reaching movements. Spoelstra J; Schweighofer N; Arbib MA Biol Cybern; 2000 Apr; 82(4):321-33. PubMed ID: 10804064 [TBL] [Abstract][Full Text] [Related]
4. Quantitative examinations for multi joint arm trajectory planning--using a robust calculation algorithm of the minimum commanded torque change trajectory. Wada Y; Kaneko Y; Nakano E; Osu R; Kawato M Neural Netw; 2001 May; 14(4-5):381-93. PubMed ID: 11411627 [TBL] [Abstract][Full Text] [Related]
5. Analysis of an optimal control model of multi-joint arm movements. Lan N Biol Cybern; 1997 Feb; 76(2):107-17. PubMed ID: 9116076 [TBL] [Abstract][Full Text] [Related]
6. A neural tracking and motor control approach to improve rehabilitation of upper limb movements. Goffredo M; Bernabucci I; Schmid M; Conforto S J Neuroeng Rehabil; 2008 Feb; 5():5. PubMed ID: 18251996 [TBL] [Abstract][Full Text] [Related]
7. The timing of control signals underlying fast point-to-point arm movements. Ghafouri M; Feldman AG Exp Brain Res; 2001 Apr; 137(3-4):411-23. PubMed ID: 11355386 [TBL] [Abstract][Full Text] [Related]
8. The control of hand equilibrium trajectories in multi-joint arm movements. Flash T Biol Cybern; 1987; 57(4-5):257-74. PubMed ID: 3689835 [TBL] [Abstract][Full Text] [Related]
9. Simulation of the primate motor cortex and free arm movements in three-dimensional space: a robot arm system controlled by an artificial neural network. Dauffenbach LM Biomed Sci Instrum; 1999; 35():360-5. PubMed ID: 11143378 [TBL] [Abstract][Full Text] [Related]
10. Modelling of direct motor program learning in fast human arm motions. Gorinevsky DM Biol Cybern; 1993; 69(3):219-28. PubMed ID: 8373893 [TBL] [Abstract][Full Text] [Related]
11. Fuzzy neuronal model of motor control inspired by cerebellar pathways to online and gradually learn inverse biomechanical functions in the presence of delay. Salimi-Badr A; Ebadzadeh MM; Darlot C Biol Cybern; 2017 Dec; 111(5-6):421-438. PubMed ID: 28993878 [TBL] [Abstract][Full Text] [Related]
12. Quantitative examinations of internal representations for arm trajectory planning: minimum commanded torque change model. Nakano E; Imamizu H; Osu R; Uno Y; Gomi H; Yoshioka T; Kawato M J Neurophysiol; 1999 May; 81(5):2140-55. PubMed ID: 10322055 [TBL] [Abstract][Full Text] [Related]
13. A model for learning human reaching movements. Karniel A; Inbar GF Biol Cybern; 1997 Sep; 77(3):173-83. PubMed ID: 9352631 [TBL] [Abstract][Full Text] [Related]
14. Can a kinetic optimization criterion predict both arm trajectory and final arm posture? Wada Y; Yamanaka K; Soga Y; Tsuyuki K; Kawato M Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1197-200. PubMed ID: 17946449 [TBL] [Abstract][Full Text] [Related]
15. Are complex control signals required for human arm movement? Gribble PL; Ostry DJ; Sanguineti V; Laboissière R J Neurophysiol; 1998 Mar; 79(3):1409-24. PubMed ID: 9497421 [TBL] [Abstract][Full Text] [Related]
16. Velocity-based planning of rapid elbow movements expands the control scheme of the equilibrium point hypothesis. Suzuki M; Yamazaki Y J Comput Neurosci; 2005; 18(2):131-49. PubMed ID: 15714266 [TBL] [Abstract][Full Text] [Related]
18. A via-point time optimization algorithm for complex sequential trajectory formation. Wada Y; Kawato M Neural Netw; 2004 Apr; 17(3):353-64. PubMed ID: 15037353 [TBL] [Abstract][Full Text] [Related]
19. Impedance characteristics of a neuromusculoskeletal model of the human arm I. Posture control. Stroeve S Biol Cybern; 1999 Nov; 81(5-6):475-94. PubMed ID: 10592022 [TBL] [Abstract][Full Text] [Related]
20. Postural control of arm and fingers through integration of movement commands. Albert ST; Hadjiosif AM; Jang J; Zimnik AJ; Soteropoulos DS; Baker SN; Churchland MM; Krakauer JW; Shadmehr R Elife; 2020 Feb; 9():. PubMed ID: 32043973 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]