These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 8324058)

  • 21. Synergistic control of forearm based on accelerometer data and artificial neural networks.
    Mijovic B; Popovic MB; Popovic DB
    Braz J Med Biol Res; 2008 May; 41(5):389-97. PubMed ID: 18516468
    [TBL] [Abstract][Full Text] [Related]  

  • 22. COMAP: a new computational interpretation of human movement planning level based on coordinated minimum angle jerk policies and six universal movement elements.
    Emadi Andani M; Bahrami F
    Hum Mov Sci; 2012 Oct; 31(5):1037-55. PubMed ID: 22925477
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A hierarchical neural-network model for control and learning of voluntary movement.
    Kawato M; Furukawa K; Suzuki R
    Biol Cybern; 1987; 57(3):169-85. PubMed ID: 3676355
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational reproductions of external force field adaption without assuming desired trajectories.
    Kambara H; Takagi A; Shimizu H; Kawase T; Yoshimura N; Schweighofer N; Koike Y
    Neural Netw; 2021 Jul; 139():179-198. PubMed ID: 33740581
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Separate adaptive mechanisms for controlling trajectory and final position in reaching.
    Scheidt RA; Ghez C
    J Neurophysiol; 2007 Dec; 98(6):3600-13. PubMed ID: 17913996
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Minimum acceleration criterion with constraints implies bang-bang control as an underlying principle for optimal trajectories of arm reaching movements.
    Ben-Itzhak S; Karniel A
    Neural Comput; 2008 Mar; 20(3):779-812. PubMed ID: 18045017
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modular control of movement and posture by the corticospinal alpha-gamma motor systems.
    Si Li ; Xin He ; Ning Lan
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4079-82. PubMed ID: 25570888
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A behavior-based inverse kinematics algorithm to predict arm prehension postures for computer-aided ergonomic evaluation.
    Wang X
    J Biomech; 1999 May; 32(5):453-60. PubMed ID: 10326998
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neuromuscular control of the point to point and oscillatory movements of a sagittal arm with the actor-critic reinforcement learning method.
    Golkhou V; Parnianpour M; Lucas C
    Comput Methods Biomech Biomed Engin; 2005 Apr; 8(2):103-13. PubMed ID: 16154874
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D human arm reaching movement planning with principal patterns in successive phases.
    Dehghani S; Bahrami F
    J Comput Neurosci; 2020 Aug; 48(3):265-280. PubMed ID: 32458184
    [TBL] [Abstract][Full Text] [Related]  

  • 31. How does the CNS control arm reaching movements? Introducing a hierarchical nonlinear predictive control organization based on the idea of muscle synergies.
    Dehghani S; Bahrami F
    PLoS One; 2020; 15(2):e0228726. PubMed ID: 32023300
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Generation of reaching movements: plausibility and implications of the equilibrium trajectory hypothesis.
    Flash T
    Brain Behav Evol; 1989; 33(2-3):63-8. PubMed ID: 2758303
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characteristics of motor programs underlying arm movements in monkeys.
    Polit A; Bizzi E
    J Neurophysiol; 1979 Jan; 42(1 Pt 1):183-94. PubMed ID: 107279
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stability properties of human reaching movements.
    Won J; Hogan N
    Exp Brain Res; 1995; 107(1):125-36. PubMed ID: 8751070
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coordinates transformation and learning control for visually-guided voluntary movement with iteration: a Newton-like method in a function space.
    Kawato M; Isobe M; Maeda Y; Suzuki R
    Biol Cybern; 1988; 59(3):161-77. PubMed ID: 3179342
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Threshold control of arm posture and movement adaptation to load.
    Foisy M; Feldman AG
    Exp Brain Res; 2006 Nov; 175(4):726-44. PubMed ID: 16847611
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How the brain generates movement.
    Rokni U; Sompolinsky H
    Neural Comput; 2012 Feb; 24(2):289-331. PubMed ID: 22023199
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of isochrony phenomenon based on the computational theory of human arm trajectory planning.
    Yokoyama H; Saito H; Kurai R; Nambu I; Wada Y
    Hum Mov Sci; 2018 Oct; 61():52-62. PubMed ID: 30015096
    [TBL] [Abstract][Full Text] [Related]  

  • 39. End-point constraints in aiming movements: effects of approach angle and speed.
    Klein Breteler MD; Gielen SC; Meulenbroek RG
    Biol Cybern; 2001 Jul; 85(1):65-75. PubMed ID: 11471841
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of command algorithms for control of upper-extremity neural prostheses.
    Humbert SD; Snyder SA; Grill WM
    IEEE Trans Neural Syst Rehabil Eng; 2002 Jun; 10(2):94-101. PubMed ID: 12236452
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.