These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 8324235)
1. Stromal cells from human long-term marrow cultures are mesenchymal cells that differentiate following a vascular smooth muscle differentiation pathway. Galmiche MC; Koteliansky VE; Brière J; Hervé P; Charbord P Blood; 1993 Jul; 82(1):66-76. PubMed ID: 8324235 [TBL] [Abstract][Full Text] [Related]
2. Differential regulation of smooth muscle markers in human bone marrow-derived mesenchymal stem cells. Hegner B; Weber M; Dragun D; Schulze-Lohoff E J Hypertens; 2005 Jun; 23(6):1191-202. PubMed ID: 15894895 [TBL] [Abstract][Full Text] [Related]
3. Early ontogeny of the human marrow from long bones: an immunohistochemical study of hematopoiesis and its microenvironment. Charbord P; Tavian M; Humeau L; Péault B Blood; 1996 May; 87(10):4109-19. PubMed ID: 8639768 [TBL] [Abstract][Full Text] [Related]
4. Phenotypic changes of human smooth muscle cells during development: late expression of heavy caldesmon and calponin. Frid MG; Shekhonin BV; Koteliansky VE; Glukhova MA Dev Biol; 1992 Oct; 153(2):185-93. PubMed ID: 1397676 [TBL] [Abstract][Full Text] [Related]
5. Nontransformed colony-derived stromal cell lines from normal human marrows. II. Phenotypic characterization and differentiation pathway. Li J; Sensebé L; Hervé P; Charbord P Exp Hematol; 1995 Feb; 23(2):133-41. PubMed ID: 7828670 [TBL] [Abstract][Full Text] [Related]
6. Isolation of bone marrow stromal cell-derived smooth muscle cells by a human SM22alpha promoter: in vitro differentiation of putative smooth muscle progenitor cells of bone marrow. Kashiwakura Y; Katoh Y; Tamayose K; Konishi H; Takaya N; Yuhara S; Yamada M; Sugimoto K; Daida H Circulation; 2003 Apr; 107(16):2078-81. PubMed ID: 12707231 [TBL] [Abstract][Full Text] [Related]
7. Innate diversity of adult human arterial smooth muscle cells: cloning of distinct subtypes from the internal thoracic artery. Li S; Fan YS; Chow LH; Van Den Diepstraten C; van Der Veer E; Sims SM; Pickering JG Circ Res; 2001 Sep; 89(6):517-25. PubMed ID: 11557739 [TBL] [Abstract][Full Text] [Related]
8. [Bone marrow stromal cells of adult mice differentiate into smooth muscle cells in vitro]. Han YL; Kang J; Li SH Zhonghua Yi Xue Za Zhi; 2003 May; 83(9):778-81. PubMed ID: 12899758 [TBL] [Abstract][Full Text] [Related]
9. Nox4 is required for maintenance of the differentiated vascular smooth muscle cell phenotype. Clempus RE; Sorescu D; Dikalova AE; Pounkova L; Jo P; Sorescu GP; Schmidt HH; Lassègue B; Griendling KK Arterioscler Thromb Vasc Biol; 2007 Jan; 27(1):42-8. PubMed ID: 17082491 [TBL] [Abstract][Full Text] [Related]
10. [Differentiation of bone marrow mesenchymal stem cells co-cultured with endothelial cells under shear stress]. Zhang L; Li Y; Zhang C; Zhang Y; Yang X Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Feb; 26(1):85-8. PubMed ID: 19334561 [TBL] [Abstract][Full Text] [Related]
11. [PDGF-BB initiates vascular smooth muscle-like phenotype differentiation of human bone marrow mesenchymal stem cells in vitro]. Wu YC; Cui L; Li G; Yin S; Gao YJ; Cao YL Zhonghua Zheng Xing Wai Ke Za Zhi; 2007 Jul; 23(4):335-9. PubMed ID: 17926862 [TBL] [Abstract][Full Text] [Related]
12. The cytoskeleton of stromal cells from human bone marrow cultures resembles that of cultured smooth muscle cells. Charbord P; Lerat H; Newton I; Tamayo E; Gown AM; Singer JW; Herve P Exp Hematol; 1990 May; 18(4):276-82. PubMed ID: 2182332 [TBL] [Abstract][Full Text] [Related]
13. A mouse bone marrow stromal cell line, TBR-B, shows inducible expression of smooth muscle-specific genes. Arakawa E; Hasegawa K; Yanai N; Obinata M; Matsuda Y FEBS Lett; 2000 Sep; 481(2):193-6. PubMed ID: 10996322 [TBL] [Abstract][Full Text] [Related]
14. Differentiated markers in undifferentiated cells: expression of smooth muscle contractile proteins in multipotent bone marrow mesenchymal stem cells. Liu Y; Deng B; Zhao Y; Xie S; Nie R Dev Growth Differ; 2013 Jun; 55(5):591-605. PubMed ID: 23557080 [TBL] [Abstract][Full Text] [Related]
16. Calponin distribution in human ciliary muscle and other anterior segment tissues. Kashiwagi K; Lindsey JD; Kashiwagi F; Tsukahara S; Weinreb RN Invest Ophthalmol Vis Sci; 1997 Feb; 38(2):349-56. PubMed ID: 9040467 [TBL] [Abstract][Full Text] [Related]
17. Calponin and SM 22 as differentiation markers of smooth muscle: spatiotemporal distribution during avian embryonic development. Duband JL; Gimona M; Scatena M; Sartore S; Small JV Differentiation; 1993 Dec; 55(1):1-11. PubMed ID: 8299876 [TBL] [Abstract][Full Text] [Related]
18. All-trans retinoic acid promotes smooth muscle cell differentiation of rabbit bone marrow-derived mesenchymal stem cells. Su ZY; Li Y; Zhao XL; Zhang M J Zhejiang Univ Sci B; 2010 Jul; 11(7):489-96. PubMed ID: 20593513 [TBL] [Abstract][Full Text] [Related]
19. Synthesis and expression of smooth muscle phenotype markers in primary culture of rabbit aortic smooth muscle cells: influence of seeding density and media and relation to cell contractility. Birukov KG; Frid MG; Rogers JD; Shirinsky VP; Koteliansky VE; Campbell JH; Campbell GR Exp Cell Res; 1993 Jan; 204(1):46-53. PubMed ID: 8416795 [TBL] [Abstract][Full Text] [Related]
20. Calponin and h-caldesmon in soft tissue tumors: consistent h-caldesmon immunoreactivity in gastrointestinal stromal tumors indicates traits of smooth muscle differentiation. Miettinen MM; Sarlomo-Rikala M; Kovatich AJ; Lasota J Mod Pathol; 1999 Aug; 12(8):756-62. PubMed ID: 10463476 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]