These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 8324627)

  • 1. Multiple sequence alignment by parallel simulated annealing.
    Ishikawa M; Toya T; Hoshida M; Nitta K; Ogiwara A; Kanehisa M
    Comput Appl Biosci; 1993 Jun; 9(3):267-73. PubMed ID: 8324627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple sequence alignment using simulated annealing.
    Kim J; Pramanik S; Chung MJ
    Comput Appl Biosci; 1994 Jul; 10(4):419-26. PubMed ID: 7804875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulated annealing algorithm for the multiple sequence alignment problem: the approach of polymers in a random medium.
    Hernández-Guía M; Mulet R; Rodríguez-Pérez S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031915. PubMed ID: 16241490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An efficient method for multiple sequence alignment.
    Kim J; Pramanik S
    Proc Int Conf Intell Syst Mol Biol; 1994; 2():212-8. PubMed ID: 7584393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple alignment using hidden Markov models.
    Eddy SR
    Proc Int Conf Intell Syst Mol Biol; 1995; 3():114-20. PubMed ID: 7584426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fractional programming approach to efficient DNA melting temperature calculation.
    Leber M; Kaderali L; Schönhuth A; Schrader R
    Bioinformatics; 2005 May; 21(10):2375-82. PubMed ID: 15769839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alignment of possible secondary structures in multiple RNA sequences using simulated annealing.
    Kim J; Cole JR; Pramanik S
    Comput Appl Biosci; 1996 Aug; 12(4):259-67. PubMed ID: 8902352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simulated annealing algorithm for finding consensus sequences.
    Keith JM; Adams P; Bryant D; Kroese DP; Mitchelson KR; Cochran DA; Lala GH
    Bioinformatics; 2002 Nov; 18(11):1494-9. PubMed ID: 12424121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein structure alignment by deterministic annealing.
    Chen L; Zhou T; Tang Y
    Bioinformatics; 2005 Jan; 21(1):51-62. PubMed ID: 15308541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive study on iterative algorithms of multiple sequence alignment.
    Hirosawa M; Totoki Y; Hoshida M; Ishikawa M
    Comput Appl Biosci; 1995 Feb; 11(1):13-8. PubMed ID: 7796270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining many multiple alignments in one improved alignment.
    Bucka-Lassen K; Caprani O; Hein J
    Bioinformatics; 1999 Feb; 15(2):122-30. PubMed ID: 10089197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic multiple sequence alignments: refinement using a genetic algorithm.
    Wang C; Lefkowitz EJ
    BMC Bioinformatics; 2005 Aug; 6():200. PubMed ID: 16086841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple sequence alignment algorithm based on a dispersion graph and ant colony algorithm.
    Chen W; Liao B; Zhu W; Xiang X
    J Comput Chem; 2009 Oct; 30(13):2031-8. PubMed ID: 19130503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pair stochastic tree adjoining grammars for aligning and predicting pseudoknot RNA structures.
    Matsui H; Sato K; Sakakibara Y
    Proc IEEE Comput Syst Bioinform Conf; 2004; ():290-9. PubMed ID: 16448022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An adaptive and iterative algorithm for refining multiple sequence alignment.
    Wang Y; Li KB
    Comput Biol Chem; 2004 Apr; 28(2):141-8. PubMed ID: 15130542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The merits of a parallel genetic algorithm in solving hard optimization problems.
    van Soest AJ; Casius LJ
    J Biomech Eng; 2003 Feb; 125(1):141-6. PubMed ID: 12661208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal alignment between groups of sequences and its application to multiple sequence alignment.
    Gotoh O
    Comput Appl Biosci; 1993 Jun; 9(3):361-70. PubMed ID: 8324637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finding the biologically optimal alignment of multiple sequences.
    Mamitsuka H
    Artif Intell Med; 2005; 35(1-2):9-18. PubMed ID: 16051477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hybrid solver for protein multiple sequence alignment problem.
    Chaabane L
    J Bioinform Comput Biol; 2018 Aug; 16(4):1850015. PubMed ID: 30105928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic programming alignment accuracy.
    Holmes I; Durbin R
    J Comput Biol; 1998; 5(3):493-504. PubMed ID: 9773345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.