These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 8324635)

  • 1. The position end-set tree: a small automaton for word recognition in biological sequences.
    Lefèvre C; Ikeda JE
    Comput Appl Biosci; 1993 Jun; 9(3):343-8. PubMed ID: 8324635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A small automaton for word recognition in DNA sequences and its application to consensus analysis of regulatory elements in DNA regions controlling gene expression.
    Lefèvre C; Ikeda JE
    Proc Int Conf Intell Syst Mol Biol; 1993; 1():243-50. PubMed ID: 7584342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pattern recognition in DNA sequences and its application to consensus foot-printing.
    Lefèvre C; Ikeda JE
    Comput Appl Biosci; 1993 Jun; 9(3):349-54. PubMed ID: 8324636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The generalised k-Truncated Suffix Tree for time-and space-efficient searches in multiple DNA or protein sequences.
    Schulz MH; Bauer S; Robinson PN
    Int J Bioinform Res Appl; 2008; 4(1):81-95. PubMed ID: 18283030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting protein function: a versatile tool for the Apple Macintosh.
    Fuchs R
    Comput Appl Biosci; 1994 Apr; 10(2):171-8. PubMed ID: 8019865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning deterministic finite automata with a smart state labeling evolutionary algorithm.
    Lucas SM; Reynolds TJ
    IEEE Trans Pattern Anal Mach Intell; 2005 Jul; 27(7):1063-74. PubMed ID: 16013754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AntiClustal: Multiple Sequence Alignment by antipole clustering and linear approximate 1-median computation.
    Di Pietro C; Di Pietro V; Emmanuele G; Ferro A; Maugeri T; Modica E; Pigola G; Pulvirenti A; Purrello M; Ragusa M; Scalia M; Shasha D; Travali S; Zimmitti V
    Proc IEEE Comput Soc Bioinform Conf; 2003; 2():326-36. PubMed ID: 16452808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNAid: a Macintosh full screen editor featuring a built-in regular expression interpreter for the search of specific patterns in biological sequences using finite state automata.
    Dardel F; Bensoussan P
    Comput Appl Biosci; 1988 Nov; 4(4):483-6. PubMed ID: 3208184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pattern matching of biological sequences with limited storage.
    Gotoh O
    Comput Appl Biosci; 1987 Mar; 3(1):17-20. PubMed ID: 3453210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Computation of Longest Common Subsequences with Multiple Substring Inclusive Constraints.
    Wang X; Wang L; Zhu D
    J Comput Biol; 2019 Sep; 26(9):938-947. PubMed ID: 30958704
    [No Abstract]   [Full Text] [Related]  

  • 11. High similarity sequence comparison in clustering large sequence databases.
    Dudoignon L; Glemet E; Heus HC; Raffinot M
    Proc IEEE Comput Soc Bioinform Conf; 2002; 1():228-36. PubMed ID: 15838139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Online control of evaluation algorithms of the image applied to identification of deglutition function].
    Liu J; Faust U; Bressmer H; Schneider J
    Biomed Tech (Berl); 1992 Jun; 37(6):137-41. PubMed ID: 1504236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient detection of unusual words.
    Apostolico A; Bock ME; Lonardi S; Xu X
    J Comput Biol; 2000; 7(1-2):71-94. PubMed ID: 10890389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance sampling of word patterns in DNA and protein sequences.
    Chan HP; Zhang NR; Chen LH
    J Comput Biol; 2010 Dec; 17(12):1697-709. PubMed ID: 21128856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal amnesic probabilistic automata or how to learn and classify proteins in linear time and space.
    Apostolico A; Bejerano G
    J Comput Biol; 2000; 7(3-4):381-93. PubMed ID: 11108469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient constrained multiple sequence alignment with performance guarantee.
    Chin FY; Ho NL; Lam TW; Wong PW; Chan MY
    Proc IEEE Comput Soc Bioinform Conf; 2003; 2():337-46. PubMed ID: 16452809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FASTPAT: a fast and efficient algorithm for string searching in DNA sequences.
    Prunella N; Liuni S; Attimonelli M; Pesole G
    Comput Appl Biosci; 1993 Oct; 9(5):541-5. PubMed ID: 8293327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MpBsmi: A new algorithm for the recognition of continuous biological sequence pattern based on index structure.
    Li W; Ren J
    PLoS One; 2018; 13(4):e0195601. PubMed ID: 29684052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled synthesis of target strings in a class of splicing systems.
    Chen PC
    Biosystems; 2005 Aug; 81(2):155-63. PubMed ID: 15885878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contextual alignment of biological sequences (Extended abstract).
    Gambin A; Lasota S; Szklarczyk R; Tiuryn J; Tyszkiewicz J
    Bioinformatics; 2002; 18 Suppl 2():S116-27. PubMed ID: 12385993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.