These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 8324636)

  • 1. Pattern recognition in DNA sequences and its application to consensus foot-printing.
    Lefèvre C; Ikeda JE
    Comput Appl Biosci; 1993 Jun; 9(3):349-54. PubMed ID: 8324636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A small automaton for word recognition in DNA sequences and its application to consensus analysis of regulatory elements in DNA regions controlling gene expression.
    Lefèvre C; Ikeda JE
    Proc Int Conf Intell Syst Mol Biol; 1993; 1():243-50. PubMed ID: 7584342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The 3of5 web application for complex and comprehensive pattern matching in protein sequences.
    Seiler M; Mehrle A; Poustka A; Wiemann S
    BMC Bioinformatics; 2006 Mar; 7():144. PubMed ID: 16542452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FASTPAT: a fast and efficient algorithm for string searching in DNA sequences.
    Prunella N; Liuni S; Attimonelli M; Pesole G
    Comput Appl Biosci; 1993 Oct; 9(5):541-5. PubMed ID: 8293327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. libFLASM: a software library for fixed-length approximate string matching.
    Ayad LA; Pissis SP; Retha A
    BMC Bioinformatics; 2016 Nov; 17(1):454. PubMed ID: 27832739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SIMD parallelization of the WORDUP algorithm for detecting statistically significant patterns in DNA sequences.
    Liuni S; Prunella N; Pesole G; D'Orazio T; Stella E; Distante A
    Comput Appl Biosci; 1993 Dec; 9(6):701-7. PubMed ID: 8143157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PEAKS: identification of regulatory motifs by their position in DNA sequences.
    Bellora N; Farré D; Mar Albà M
    Bioinformatics; 2007 Jan; 23(2):243-4. PubMed ID: 17098773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer-assisted prediction, classification, and delimitation of protein binding sites in nucleic acids.
    Frech K; Herrmann G; Werner T
    Nucleic Acids Res; 1993 Apr; 21(7):1655-64. PubMed ID: 8479918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methods to define and locate patterns of motifs in sequences.
    Staden R
    Comput Appl Biosci; 1988 Mar; 4(1):53-60. PubMed ID: 2898280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Software tools for motif and pattern scanning: program descriptions including a universal sequence reading algorithm.
    Cockwell KY; Giles IG
    Comput Appl Biosci; 1989 Jul; 5(3):227-32. PubMed ID: 2766008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition.
    Melvin I; Ie E; Kuang R; Weston J; Stafford WN; Leslie C
    BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S2. PubMed ID: 17570145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The position end-set tree: a small automaton for word recognition in biological sequences.
    Lefèvre C; Ikeda JE
    Comput Appl Biosci; 1993 Jun; 9(3):343-8. PubMed ID: 8324635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fast, sensitive pattern-matching approach for protein sequences.
    Rohde K; Bork P
    Comput Appl Biosci; 1993 Apr; 9(2):183-9. PubMed ID: 8481821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pattern locator: a new tool for finding local sequence patterns in genomic DNA sequences.
    Mrázek J; Xie S
    Bioinformatics; 2006 Dec; 22(24):3099-100. PubMed ID: 17095514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A pattern matching algorithm for codon optimization and CpG motif-engineering in DNA expression vectors.
    Satya RV; Mukherjee A; Ranga U
    Proc IEEE Comput Soc Bioinform Conf; 2003; 2():294-305. PubMed ID: 16452805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metrics for comparing regulatory sequences on the basis of pattern counts.
    van Helden J
    Bioinformatics; 2004 Feb; 20(3):399-406. PubMed ID: 14764560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finding composite regulatory patterns in DNA sequences.
    Eskin E; Pevzner PA
    Bioinformatics; 2002; 18 Suppl 1():S354-63. PubMed ID: 12169566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using RepeatMasker to identify repetitive elements in genomic sequences.
    Chen N
    Curr Protoc Bioinformatics; 2004 May; Chapter 4():Unit 4.10. PubMed ID: 18428725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. OMPPM: online multiple palindrome pattern matching.
    Kim H; Han YS
    Bioinformatics; 2016 Apr; 32(8):1151-7. PubMed ID: 26677963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA sequence compression using the burrows-wheeler transform.
    Adjeroh D; Zhang Y; Mukherjee A; Powell M; Bell T
    Proc IEEE Comput Soc Bioinform Conf; 2002; 1():303-13. PubMed ID: 15838146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.