These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 8324927)

  • 1. Structural influences on resistance in the hindlimb vascular bed of the renal hypertensive rabbit.
    Neilson JA; West MJ
    Clin Exp Pharmacol Physiol; 1993 May; 20(5):377-9. PubMed ID: 8324927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of autonomic and non-autonomic components of resting hindlimb vascular resistance and reactivity to pressor substances in renal hypertensive rabbits.
    Angus JA; West MJ; Korner PI
    Clin Sci Mol Med Suppl; 1976 Dec; 3():57s-59s. PubMed ID: 1071682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microvascular alterations in the one-kidney, one-clip renal hypertensive rat.
    Prewitt RL; Chen II; Dowell RF
    Am J Physiol; 1984 May; 246(5 Pt 2):H728-32. PubMed ID: 6720986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanics and composition of cerebral arterioles in renal and spontaneously hypertensive rats.
    Baumbach GL; Hajdu MA
    Hypertension; 1993 Jun; 21(6 Pt 1):816-26. PubMed ID: 8500863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased arteriolar wall-to-lumen ratio in a normotensive vascular bed in coarctation hypertension.
    Plunkett WC; Overbeck HW
    Am J Physiol; 1985 Oct; 249(4 Pt 2):H859-66. PubMed ID: 4051020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of blood pressure and hindlimb conductance during hemorrhage in conscious renal hypertensive rabbits.
    Weichert G; Courneya CA
    Am J Physiol; 1995 Jun; 268(6 Pt 2):H2302-10. PubMed ID: 7611481
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exercise training normalizes wall-to-lumen ratio of the gracilis muscle arterioles and reduces pressure in spontaneously hypertensive rats.
    Amaral SL; Zorn TM; Michelini LC
    J Hypertens; 2000 Nov; 18(11):1563-72. PubMed ID: 11081768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced myogenic activation in skeletal muscle arterioles from spontaneously hypertensive rats.
    Falcone JC; Granger HJ; Meininger GA
    Am J Physiol; 1993 Dec; 265(6 Pt 2):H1847-55. PubMed ID: 8285222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphometry of canine coronary arteries, arterioles, and capillaries during hypertension and left ventricular hypertrophy.
    Tomanek RJ; Palmer PJ; Peiffer GL; Schreiber KL; Eastham CL; Marcus ML
    Circ Res; 1986 Jan; 58(1):38-46. PubMed ID: 2935323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the renal nerves in the maintenance of DOCA-salt hypertension in the rat. Influence on the renal vasculature and sodium excretion.
    Katholi RE; Naftilan AJ; Bishop SP; Oparil S
    Hypertension; 1983; 5(4):427-35. PubMed ID: 6345357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural factors increase blood pressure through the interaction of resistance vessel geometry with neurohumoral and local factors: estimates in rabbits with renal cellophane-wrap hypertension with intact effectors and during neurohumoral blockade.
    Wright CE; Angus JA; Korner PI
    J Hypertens; 2002 Mar; 20(3):471-83. PubMed ID: 11875315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural remodeling of resistance arteries in uremic hypertension.
    New DI; Chesser AM; Thuraisingham RC; Yaqoob MM
    Kidney Int; 2004 May; 65(5):1818-25. PubMed ID: 15086922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronic absence of baroreceptor inputs prevents training-induced cardiovascular adjustments in normotensive and spontaneously hypertensive rats.
    Ceroni A; Chaar LJ; Bombein RL; Michelini LC
    Exp Physiol; 2009 Jun; 94(6):630-40. PubMed ID: 19251981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of ouabain on arteriolar responses to norepinephrine in chronic, benign, volume-expanded hypertension.
    Overbeck HW
    Hypertension; 1984; 6(2 Pt 2):I82-7. PubMed ID: 6327525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimation of magnitude of autonomic and non-autonomic components of hindlimb vascular resistance in renal hypertension.
    Angus JA; West MJ; Korner PI
    Clin Exp Pharmacol Physiol; 1975; Suppl 2():149-52. PubMed ID: 1183084
    [No Abstract]   [Full Text] [Related]  

  • 16. Vascular reactivity of rabbit isolated renal and femoral resistance arteries in renal wrap hypertension.
    Khammy MM; Angus JA; Wright CE
    Eur J Pharmacol; 2016 Feb; 773():32-41. PubMed ID: 26806799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renal afferent arteriolar structure in the genetically hypertensive (GH) rat and the ability of losartan and enalapril to cause structural remodelling.
    Ledingham JM; Laverty R
    J Hypertens; 1998 Dec; 16(12 Pt 2):1945-52. PubMed ID: 9886881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distributions of microvascular pressure in skeletal muscle of one-kidney, one clip, two-kidney, one clip, and deoxycorticosterone-salt hypertensive rats.
    Meininger GA; Harris PD; Joshua IG
    Hypertension; 1984; 6(1):27-34. PubMed ID: 6693146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arteriolar reactivity to pressure stimuli in hamsters with renal hypertension.
    Stacy DL; Joyner WL; Gilmore JP
    Hypertension; 1987 Jul; 10(1):82-92. PubMed ID: 3596772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of non-autonomic and autonomic components of iliac bed vascular resistance in renal hypertensive rabbits.
    West MJ; Angus JA; Korner PI
    Cardiovasc Res; 1975 Sep; 9(5):697-706. PubMed ID: 1201579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.