BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 8326058)

  • 1. The effect of aspirin on cochlear mechanical tuning.
    Brown AM; Williams DM; Gaskill SA
    J Acoust Soc Am; 1993 Jun; 93(6):3298-307. PubMed ID: 8326058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic distortion as a measure of frequency selectivity: relation to psychophysical equivalent rectangular bandwidth.
    Brown AM; Gaskill SA; Carlyon RP; Williams DM
    J Acoust Soc Am; 1993 Jun; 93(6):3291-7. PubMed ID: 8326057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of contralateral broad-band noise on acoustic distortion products from the human ear.
    Williams DM; Brown AM
    Hear Res; 1997 Feb; 104(1-2):127-46. PubMed ID: 9119756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Partial dissociation of spontaneous otoacoustic emissions and distortion products during aspirin use in humans.
    Wier CC; Pasanen EG; McFadden D
    J Acoust Soc Am; 1988 Jul; 84(1):230-7. PubMed ID: 3411052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perceptual consequences of the interactions between spontaneous otoacoustic emissions and external tones. I. Monaural diplacusis and aftertones.
    Long G
    Hear Res; 1998 May; 119(1-2):49-60. PubMed ID: 9641318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of aspirin on distortion product fine structure: interpreted by the two-source model for distortion product otoacoustic emissions generation.
    Rao A; Long GR
    J Acoust Soc Am; 2011 Feb; 129(2):792-800. PubMed ID: 21361438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of aspirin on phase gradient of 2F1-F2 distortion product otoacoustic emissions.
    Parazzini M; Hall AJ; Lutman ME; Kapadia S
    Hear Res; 2005 Jul; 205(1-2):44-52. PubMed ID: 15953514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of contralateral pure tone stimulation on distortion emissions suggests a frequency-specific functioning of the efferent cochlear control.
    Althen H; Wittekindt A; Gaese B; Kössl M; Abel C
    J Neurophysiol; 2012 Apr; 107(7):1962-9. PubMed ID: 22262828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of spontaneous and evoked otoacoustic emissions and associated psychoacoustic microstructure by aspirin consumption.
    Long GR; Tubis A
    J Acoust Soc Am; 1988 Oct; 84(4):1343-53. PubMed ID: 3198870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of common stimulus parameters on distortion product otoacoustic emission fine structure.
    Johnson TA; Baranowski LG
    Ear Hear; 2012; 33(2):239-49. PubMed ID: 21918451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compression estimates using behavioral and otoacoustic emission measures.
    Williams EJ; Bacon SP
    Hear Res; 2005 Mar; 201(1-2):44-54. PubMed ID: 15721560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Otoacoustic emission estimates of human basilar membrane impulse response duration and cochlear filter tuning.
    Raufer S; Verhulst S
    Hear Res; 2016 Dec; 342():150-160. PubMed ID: 27989947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitization to masked tones following notched-noise correlates with estimates of cochlear function using distortion product otoacoustic emissions.
    Zhou X; Henin S; Thompson SE; Long GR; Parra LC
    J Acoust Soc Am; 2010 Feb; 127(2):970-6. PubMed ID: 20136219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Otoacoustic emissions and quinine sulfate.
    McFadden D; Pasanen EG
    J Acoust Soc Am; 1994 Jun; 95(6):3460-74. PubMed ID: 8046138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interpretation of distortion product otoacoustic emission measurements. II. Estimating tuning characteristics using three stimulus tones.
    Mills DM
    J Acoust Soc Am; 1998 Jan; 103(1):507-23. PubMed ID: 9440336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age-related shifts in distortion product otoacoustic emissions peak-ratios and amplitude modulation spectra.
    Lai J; Bartlett EL
    Hear Res; 2015 Sep; 327():186-98. PubMed ID: 26232530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring distortion product otoacoustic emissions using continuously sweeping primaries.
    Long GR; Talmadge CL; Lee J
    J Acoust Soc Am; 2008 Sep; 124(3):1613-26. PubMed ID: 19045653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antioxidant treatment reduces blast-induced cochlear damage and hearing loss.
    Ewert DL; Lu J; Li W; Du X; Floyd R; Kopke R
    Hear Res; 2012 Mar; 285(1-2):29-39. PubMed ID: 22326291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cochlear, brainstem, and psychophysical responses show spectrotemporal tradeoff in human auditory processing.
    Bidelman GM; Bhagat SP
    Neuroreport; 2017 Jan; 28(1):17-22. PubMed ID: 27893606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fine structure of the 2f1-f2 acoustic distortion product: changes with primary level.
    He NJ; Schmiedt RA
    J Acoust Soc Am; 1993 Nov; 94(5):2659-69. PubMed ID: 8270742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.