These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 8326061)

  • 1. Noninvasive measurement of the cochlear traveling-wave ratio.
    Shera CA; Zweig G
    J Acoust Soc Am; 1993 Jun; 93(6):3333-52. PubMed ID: 8326061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The origin of periodicity in the spectrum of evoked otoacoustic emissions.
    Zweig G; Shera CA
    J Acoust Soc Am; 1995 Oct; 98(4):2018-47. PubMed ID: 7593924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous Intracochlear Pressure Measurements from Two Cochlear Locations: Propagation of Distortion Products in Gerbil.
    Dong W
    J Assoc Res Otolaryngol; 2017 Apr; 18(2):209-225. PubMed ID: 27909837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs.
    Shera CA; Guinan JJ
    J Acoust Soc Am; 1999 Feb; 105(2 Pt 1):782-98. PubMed ID: 9972564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Testing coherent reflection in chinchilla: Auditory-nerve responses predict stimulus-frequency emissions.
    Shera CA; Tubis A; Talmadge CL
    J Acoust Soc Am; 2008 Jul; 124(1):381-95. PubMed ID: 18646984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast reverse propagation of sound in the living cochlea.
    He W; Fridberger A; Porsov E; Ren T
    Biophys J; 2010 Jun; 98(11):2497-505. PubMed ID: 20513393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency selectivity of the human cochlea: Suppression tuning of spontaneous otoacoustic emissions.
    Manley GA; van Dijk P
    Hear Res; 2016 Jun; 336():53-62. PubMed ID: 27139323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Do forward- and backward-traveling waves occur within the cochlea? Countering the critique of Nobili et al.
    Shera CA; Tubis A; Talmadge CL
    J Assoc Res Otolaryngol; 2004 Dec; 5(4):349-59. PubMed ID: 15675000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A parametric model of the spectral periodicity of stimulus frequency otoacoustic emissions.
    Lineton B; Lutman ME
    J Acoust Soc Am; 2003 Aug; 114(2):883-95. PubMed ID: 12942970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direction of wave propagation in the cochlea for internally excited basilar membrane.
    Li Y; Grosh K
    J Acoust Soc Am; 2012 Jun; 131(6):4710-21. PubMed ID: 22712944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous otoacoustic emissions, threshold microstructure, and psychophysical tuning over a wide frequency range in humans.
    Baiduc RR; Lee J; Dhar S
    J Acoust Soc Am; 2014 Jan; 135(1):300-14. PubMed ID: 24437770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cochlear traveling-wave amplification, suppression, and beamforming probed using noninvasive calibration of intracochlear distortion sources.
    Shera CA; Guinan JJ
    J Acoust Soc Am; 2007 Feb; 121(2):1003-16. PubMed ID: 17348523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reverse wave propagation in the cochlea.
    He W; Fridberger A; Porsov E; Grosh K; Ren T
    Proc Natl Acad Sci U S A; 2008 Feb; 105(7):2729-33. PubMed ID: 18272498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling otoacoustic emission and hearing threshold fine structures.
    Talmadge CL; Tubis A; Long GR; Piskorski P
    J Acoust Soc Am; 1998 Sep; 104(3 Pt 1):1517-43. PubMed ID: 9745736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How does the inner ear generate distortion product otoacoustic emissions?. Results from a realistic model of the human cochlea.
    Vetesnik A; Nobili R; Gummer A
    ORL J Otorhinolaryngol Relat Spec; 2006; 68(6):347-52. PubMed ID: 17065828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A common microstructure in behavioral hearing thresholds and stimulus-frequency otoacoustic emissions.
    Dewey JB; Dhar S
    J Acoust Soc Am; 2017 Nov; 142(5):3069. PubMed ID: 29195446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison between otoacoustic and auditory brainstem response latencies supports slow backward propagation of otoacoustic emissions.
    Moleti A; Sisto R
    J Acoust Soc Am; 2008 Mar; 123(3):1495-503. PubMed ID: 18345838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of low-frequency biasing on otoacoustic and neural measures suggest that stimulus-frequency otoacoustic emissions originate near the peak region of the traveling wave.
    Lichtenhan JT
    J Assoc Res Otolaryngol; 2012 Feb; 13(1):17-28. PubMed ID: 22002610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transmission of oto-acoustic emissions within the cochlea.
    Sichel JY; Freeman S; Perez R; Sohmer H
    J Basic Clin Physiol Pharmacol; 2006; 17(3):143-57. PubMed ID: 17598306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compression estimates using behavioral and otoacoustic emission measures.
    Williams EJ; Bacon SP
    Hear Res; 2005 Mar; 201(1-2):44-54. PubMed ID: 15721560
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.