These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 8326061)

  • 21. Mammalian spontaneous otoacoustic emissions are amplitude-stabilized cochlear standing waves.
    Shera CA
    J Acoust Soc Am; 2003 Jul; 114(1):244-62. PubMed ID: 12880039
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparing stimulus-frequency otoacoustic emissions measured by compression, suppression, and spectral smoothing.
    Kalluri R; Shera CA
    J Acoust Soc Am; 2007 Dec; 122(6):3562-75. PubMed ID: 18247764
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Supporting evidence for reverse cochlear traveling waves.
    Dong W; Olson ES
    J Acoust Soc Am; 2008 Jan; 123(1):222-40. PubMed ID: 18177153
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Allen-Fahey and related experiments support the predominance of cochlear slow-wave otoacoustic emissions.
    Shera CA; Tubis A; Talmadge CL; de Boer E; Fahey PF; Guinan JJ
    J Acoust Soc Am; 2007 Mar; 121(3):1564-75. PubMed ID: 17407894
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stimulus-frequency-emission group delay: a test of coherent reflection filtering and a window on cochlear tuning.
    Shera CA; Guinan JJ
    J Acoust Soc Am; 2003 May; 113(5):2762-72. PubMed ID: 12765394
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The spiral staircase: tonotopic microstructure and cochlear tuning.
    Shera CA
    J Neurosci; 2015 Mar; 35(11):4683-90. PubMed ID: 25788685
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Use of acoustic distortion products in clinical diagnosis. The site of origin of otoacoustic emissions in the inner ear].
    Plinkert PK; Harris FP; Probst R
    HNO; 1993 Jul; 41(7):339-44. PubMed ID: 8376180
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydromechanical Structure of the Cochlea Supports the Backward Traveling Wave in the Cochlea
    Chen F; Zha D; Yang X; Hubbard A; Nuttall A
    Neural Plast; 2018; 2018():7502648. PubMed ID: 30123255
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Suppression of stimulus frequency otoacoustic emissions.
    Brass D; Kemp DT
    J Acoust Soc Am; 1993 Feb; 93(2):920-39. PubMed ID: 8445127
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cochlear reflectivity in transmission-line models and otoacoustic emission characteristic time delays.
    Sisto R; Moleti A; Shera CA
    J Acoust Soc Am; 2007 Dec; 122(6):3554-61. PubMed ID: 18247763
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interference effects and phase sensitivity in hearing.
    Moore BC
    Philos Trans A Math Phys Eng Sci; 2002 May; 360(1794):833-58. PubMed ID: 12804282
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Human cochlear tuning estimates from stimulus-frequency otoacoustic emissions.
    Bentsen T; Harte JM; Dau T
    J Acoust Soc Am; 2011 Jun; 129(6):3797-807. PubMed ID: 21682403
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Otoacoustic emission estimates of human basilar membrane impulse response duration and cochlear filter tuning.
    Raufer S; Verhulst S
    Hear Res; 2016 Dec; 342():150-160. PubMed ID: 27989947
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of aging on otoacoustic emissions.
    Stover L; Norton SJ
    J Acoust Soc Am; 1993 Nov; 94(5):2670-81. PubMed ID: 8270743
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling the effect of suppression on the periodicity of stimulus frequency otoacoustic emissions.
    Lineton B; Lutman ME
    J Acoust Soc Am; 2003 Aug; 114(2):859-70. PubMed ID: 12942968
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coherent reflection in a two-dimensional cochlea: Short-wave versus long-wave scattering in the generation of reflection-source otoacoustic emissions.
    Shera CA; Tubis A; Talmadge CL
    J Acoust Soc Am; 2005 Jul; 118(1):287-313. PubMed ID: 16119350
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transient evoked otoacoustic emission latency and cochlear tuning at different stimulus levels.
    Sisto R; Moleti A
    J Acoust Soc Am; 2007 Oct; 122(4):2183-90. PubMed ID: 17902854
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the spectral periodicity of transient-evoked otoacoustic emissions from normal and damaged cochleas.
    Avan P; Wit HP; Guitton M; Mom T; Bonfils P
    J Acoust Soc Am; 2000 Sep; 108(3 Pt 1):1117-27. PubMed ID: 11008814
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling cochlear dynamics: interrelation between cochlea mechanics and psychoacoustics.
    Epp B; Verhey JL; Mauermann M
    J Acoust Soc Am; 2010 Oct; 128(4):1870-83. PubMed ID: 20968359
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The cochlear amplifier: augmentation of the traveling wave within the inner ear.
    Oghalai JS
    Curr Opin Otolaryngol Head Neck Surg; 2004 Oct; 12(5):431-8. PubMed ID: 15377957
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.