These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 8326324)

  • 41. Biotransformation of ferulic acid to 4-vinylguaiacol by a wild and a diploid strain of Aspergillus niger.
    Baqueiro-Peña I; Rodríguez-Serrano G; González-Zamora E; Augur C; Loera O; Saucedo-Castañeda G
    Bioresour Technol; 2010 Jun; 101(12):4721-4. PubMed ID: 20153180
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microbial metabolism studies of the antimalarial drug arteether.
    Lee IS; ElSohly HN; Hufford CD
    Pharm Res; 1990 Feb; 7(2):199-203. PubMed ID: 2308900
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biotransformation of linalool to furanoid and pyranoid linalool oxides by Aspergillus niger.
    Demyttenaere JC; Willemen HM
    Phytochemistry; 1998 Mar; 47(6):1029-36. PubMed ID: 9564732
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biotransformation of quinazoline and phthalazine by Aspergillus niger.
    Sutherland JB; Heinze TM; Schnackenberg LK; Freeman JP; Williams AJ
    J Biosci Bioeng; 2011 Mar; 111(3):333-5. PubMed ID: 21169055
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Recycling of cell culture and efficient release of intracellular fructosyltransferase by ultrasonication for the production of fructooligosaccharides.
    Ganaie MA; Gupta US
    Carbohydr Polym; 2014 Sep; 110():253-8. PubMed ID: 24906753
    [TBL] [Abstract][Full Text] [Related]  

  • 46. New monoterpenoid by biotransformation of thymoquinone using Aspergillus niger.
    Mohammad MY; Shakya A; Al-Bakain R; Haroon MH; Choudhary MI
    Bioorg Chem; 2018 Oct; 80():212-215. PubMed ID: 29957489
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Kinetics of anhydride formation in xerogels of poly(acrylic acid).
    Blanco-Fuente H; Anguiano-Igea S; Otero-Espinar FJ; Blanco-Méndez J
    Biomaterials; 1996 Sep; 17(17):1667-75. PubMed ID: 8866028
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Production of vanillin from waste residue of rice bran oil by Aspergillus niger and Pycnoporus cinnabarinus.
    Zheng L; Zheng P; Sun Z; Bai Y; Wang J; Guo X
    Bioresour Technol; 2007 Mar; 98(5):1115-9. PubMed ID: 16782330
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biotransformation of polydatin to resveratrol in Polygonum cuspidatum roots by highly immobilized edible Aspergillus niger and Yeast.
    Jin S; Luo M; Wang W; Zhao CJ; Gu CB; Li CY; Zu YG; Fu YJ; Guan Y
    Bioresour Technol; 2013 May; 136():766-70. PubMed ID: 23566471
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biotransformation of Steroids and Flavonoids by Cultures of Aspergillus niger.
    Parshikov IA; Sutherland JB
    Appl Biochem Biotechnol; 2015 Jun; 176(3):903-23. PubMed ID: 25951777
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microbial conversion of jasmonates-hydroxylations by Aspergillus niger.
    Miersch O; Porzel A; Wasternack C
    Phytochemistry; 1999 Apr; 50(7):1147-52. PubMed ID: 10234859
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cyclodextrin/carbopol micro-scale interpenetrating networks (ms-IPNs) for drug delivery.
    Rodriguez-Tenreiro C; Diez-Bueno L; Concheiro A; Torres-Labandeira JJ; Alvarez-Lorenzo C
    J Control Release; 2007 Oct; 123(1):56-66. PubMed ID: 17761336
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effective bioconversion of sophoricoside to genistein from Fructus sophorae using immobilized Aspergillus niger and Yeast.
    Feng C; Jin S; Xia XX; Guan Y; Luo M; Zu YG; Fu YJ
    World J Microbiol Biotechnol; 2015 Jan; 31(1):187-97. PubMed ID: 25392205
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Carbopol-based gels for nasal delivery of progesterone.
    Rathnam G; Narayanan N; Ilavarasan R
    AAPS PharmSciTech; 2008; 9(4):1078-82. PubMed ID: 18850277
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Expression in Aspergillus niger of the starch-binding domain of glucoamylase. Comparison with the proteolytically produced starch-binding domain.
    Le Gal-Coëffet MF; Jacks AJ; Sorimachi K; Williamson MP; Williamson G; Archer DB
    Eur J Biochem; 1995 Oct; 233(2):561-7. PubMed ID: 7588802
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biotransformation of Progesterone by the Ascomycete Aspergillus niger N402.
    Savinova OS; Solyev PN; Vasina DV; Tyazhelova TV; Fedorova TV; Savinova TS
    Biochemistry (Mosc); 2018 Jan; 83(1):26-31. PubMed ID: 29534665
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biotransformations of organic compounds mediated by cultures of Aspergillus niger.
    Parshikov IA; Woodling KA; Sutherland JB
    Appl Microbiol Biotechnol; 2015 Sep; 99(17):6971-86. PubMed ID: 26162670
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biotransformation of 6-dehydroprogesterone with Aspergillus niger and Gibberella fujikuroi.
    Ahmad MS; Zafar S; Yousuf S; Wahab AT; Rahman AU; Choudhary MI
    Steroids; 2016 Aug; 112():62-7. PubMed ID: 27133903
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biotransformation of (+)-isofraxinellone by
    Okuno Y; Marumoto S; Tsurumi J; Miyazawa M
    Nat Prod Res; 2019 May; 33(10):1518-1521. PubMed ID: 29363347
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biotransformations of imbricatolic acid by Aspergillus niger and Rhizopus nigricans cultures.
    Schmeda-Hirschmann G; Aranda C; Kurina M; Rodríguez JA; Theoduloz C
    Molecules; 2007 May; 12(5):1092-100. PubMed ID: 17873843
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.