These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 8326399)

  • 1. High-speed automated discrete blood sampling for positron emission tomography.
    Graham MM; Lewellen BL
    J Nucl Med; 1993 Aug; 34(8):1357-60. PubMed ID: 8326399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of an automated blood sampling system for use in humans.
    Henley DE; Leendertz JA; Russell GM; Wood SA; Taheri S; Woltersdorf WW; Lightman SL
    J Med Eng Technol; 2009; 33(3):199-208. PubMed ID: 19340690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous arterial positron monitor for quantitation in PET imaging.
    Nelson AD; Muzic RF; Miraldi F; Muswick GJ; Leisure GP; Voelker W
    Am J Physiol Imaging; 1990; 5(2):84-8. PubMed ID: 2252609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of tomographic sampling in hybrid PET using the Fourier crosstalk matrix.
    Stodilka RZ; Soares EJ; Glick SJ
    IEEE Trans Med Imaging; 2002 Dec; 21(12):1468-78. PubMed ID: 12588031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simplifications in analyzing positron emission tomography data: effects on outcome measures.
    Logan J; Alexoff D; Kriplani A
    Nucl Med Biol; 2007 Oct; 34(7):743-56. PubMed ID: 17921027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of pulmonary nodules and lung cancer with one-inch crystal gamma coincidence positron emission tomography/CT versus dedicated positron emission tomography/CT.
    Moodie K; Cherk MH; Lau E; Turlakow A; Skinner S; Hicks RJ; Kelly MJ; Kalff V
    J Med Imaging Radiat Oncol; 2009 Feb; 53(1):32-9. PubMed ID: 19453526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feasibility of a high-speed gamma-camera design using the high-yield-pileup-event-recovery method.
    Wong WH; Li H; Uribe J; Baghaei H; Wang Y; Yokoyama S
    J Nucl Med; 2001 Apr; 42(4):624-32. PubMed ID: 11337552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An in-line microfluidic blood sampling interface between patients and saline infusion systems.
    Browne AW; Ahn CH
    Biomed Microdevices; 2011 Aug; 13(4):661-9. PubMed ID: 21465091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A rotating PET scanner using BGO block detectors: design, performance and applications.
    Townsend DW; Wensveen M; Byars LG; Geissbuhler A; Tochon-Danguy HJ; Christin A; Defrise M; Bailey DL; Grootoonk S; Donath A
    J Nucl Med; 1993 Aug; 34(8):1367-76. PubMed ID: 8326401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The design of an animal PET: flexible geometry for achieving optimal spatial resolution or high sensitivity.
    Weber S; Terstegge A; Herzog H; Reinartz R; Reinhart P; Rongen F; Müller-Gärtner HW; Halling H
    IEEE Trans Med Imaging; 1997 Oct; 16(5):684-9. PubMed ID: 9368124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Operational radiation safety for PET-CT, SPECT-CT, and cyclotron facilities.
    Zanzonico P; Dauer L; St Germain J
    Health Phys; 2008 Nov; 95(5):554-70. PubMed ID: 18849690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood sampling devices and measurements.
    Eriksson L; Kanno I
    Med Prog Technol; 1991; 17(3-4):249-57. PubMed ID: 1839858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A subcutaneous capillary filtrate collector for measurement of blood chemistries.
    Ash SR; Rainier JB; Zopp WE; Truitt RB; Janle EM; Kissinger PT; Poulos JT
    ASAIO J; 1993; 39(3):M699-705. PubMed ID: 8268628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiation dose to positron emission tomography technologists during quantitative versus qualitative studies.
    McCormick VA; Miklos JA
    J Nucl Med; 1993 May; 34(5):769-72. PubMed ID: 8478709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The on-line monitoring of continuously withdrawn arterial blood during PET studies using a single BGO/photomultiplier assembly and non-stick tubing.
    Ranicar AS; Williams CW; Schnorr L; Clark JC; Rhodes CG; Bloomfield PM; Jones T
    Med Prog Technol; 1991; 17(3-4):259-64. PubMed ID: 1839859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Full modelling of the MOSAIC animal PET system based on the GATE Monte Carlo simulation code.
    Merheb C; Petegnief Y; Talbot JN
    Phys Med Biol; 2007 Feb; 52(3):563-76. PubMed ID: 17228105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Investigations of radiation exposure of the medical personnel during F-18-FDG PET studies].
    Linemann H; Will E; Beuthien-Baumann B
    Nuklearmedizin; 2000; 39(3):77-81. PubMed ID: 10834195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PET with a dual-head coincidence camera: spatial resolution, scatter fraction, and sensitivity.
    Kunze WD; Baehre M; Richter E
    J Nucl Med; 2000 Jun; 41(6):1067-74. PubMed ID: 10855637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution volume ratios without blood sampling from graphical analysis of PET data.
    Logan J; Fowler JS; Volkow ND; Wang GJ; Ding YS; Alexoff DL
    J Cereb Blood Flow Metab; 1996 Sep; 16(5):834-40. PubMed ID: 8784228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. State of the art and challenges of time-of-flight PET.
    Conti M
    Phys Med; 2009 Mar; 25(1):1-11. PubMed ID: 19101188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.