BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 8326440)

  • 1. Mechanical characteristics of proximal femoral reconstruction after 50% resection.
    Markel MD; Gottsauner-Wolf F; Rock MG; Frassica FJ; Chao EY
    J Orthop Res; 1993 May; 11(3):339-49. PubMed ID: 8326440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical evaluation of six types of reconstruction following 25, 50, and 75% resection of the proximal femur.
    Kohles SS; Markel MD; Rock MG; Chao EY; Vanderby R
    J Orthop Res; 1994 Nov; 12(6):834-43. PubMed ID: 7983559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of allograft/endoprosthetic composites with a step-cut or transverse osteotomy configuration.
    Markel MD; Wood SA; Bogdanske JJ; Rapoff AJ; Kalscheur VL; Bouvy BM; Rock MG; Chao EY; Vanderby R
    J Orthop Res; 1995 Jul; 13(4):639-41. PubMed ID: 7674081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of cortical strain after cemented and press-fit proximal and distal femoral replacement.
    Hua J; Walker PS
    J Orthop Res; 1992 Sep; 10(5):739-44. PubMed ID: 1500986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fixation of femoral allograft/prosthesis composites after 25%, 50% and 75% resection.
    Kohles SS; Markel MD; Rock MG; Chao EY; Vanderby R
    Med Eng Phys; 1996 Mar; 18(2):115-21. PubMed ID: 8673317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mechanical comparison and review of transverse, step-cut, and sigmoid osteotomies.
    Cascio BM; Thomas KA; Wilson SC
    Clin Orthop Relat Res; 2003 Jun; (411):296-304. PubMed ID: 12782888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tension band wire fixation for valgus osteotomies of the proximal femur: a biomechanical study of three configurations of fixation.
    Volpon JB; Batista LC; Shimano MM; Moro CA
    Clin Biomech (Bristol, Avon); 2008 May; 23(4):395-401. PubMed ID: 18187241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preclinical testing of a wedge-rod system for fusionless correction of scoliosis.
    Betz RR; Cunningham B; Selgrath C; Drewry T; Sherman MC
    Spine (Phila Pa 1976); 2003 Oct; 28(20):S275-8. PubMed ID: 14560203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A biomechanical evaluation of press-fit stem constructs for tumor endoprosthetic reconstruction of the distal femur.
    Ferguson PC; Zdero R; Schemitsch EH; Deheshi BM; Bell RS; Wunder JS
    J Arthroplasty; 2011 Dec; 26(8):1373-9. PubMed ID: 21296548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclic loading of periprosthetic fracture fixation constructs.
    Talbot M; Zdero R; Schemitsch EH
    J Trauma; 2008 May; 64(5):1308-12. PubMed ID: 18469655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical analysis of distal femur fracture fixation: fixed-angle screw-plate construct versus condylar blade plate.
    Higgins TF; Pittman G; Hines J; Bachus KN
    J Orthop Trauma; 2007 Jan; 21(1):43-6. PubMed ID: 17211268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability of proximal femoral grafts in canine hip arthroplasty.
    Heiner JP; Kohles SS; Manley PA; Vanderby R; Markel MD
    Clin Orthop Relat Res; 1997 Aug; (341):233-40. PubMed ID: 9269179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracorporeally irradiated autograft-prosthetic composite arthroplasty using AML extensively porous-coated stem for proximal femur reconstruction: a clinical analysis of 14 patients.
    Chen CF; Chen WM; Cheng YC; Chiang CC; Huang CK; Chen TH
    J Surg Oncol; 2009 Oct; 100(5):418-22. PubMed ID: 19653257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative biomechanical analysis of implants for the stabilization of proximal humerus fractures.
    Füchtmeier B; May R; Fierlbeck J; Hammer J; Nerlich M
    Technol Health Care; 2006; 14(4-5):261-70. PubMed ID: 17065749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Mathematical simulation of stem/cement/bone mechanical interactions for Poldi-Cech, CF-30, MS-30 and PFC femoral components].
    Kovanda M; Havlícek V; Hudec J
    Acta Chir Orthop Traumatol Cech; 2009 Apr; 76(2):110-5. PubMed ID: 19439130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Noncemented total hip arthroplasty: influence of extramedullary parameters on initial implant stability and on bone-implant interface stresses].
    Ramaniraka NA; Rakotomanana LR; Rubin PJ; Leyvraz P
    Rev Chir Orthop Reparatrice Appar Mot; 2000 Oct; 86(6):590-7. PubMed ID: 11060433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The stiffness characteristics of hybrid Ilizarov fixators.
    Baran O; Havitcioglu H; Tatari H; Cecen B
    J Biomech; 2008 Oct; 41(14):2960-3. PubMed ID: 18789446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical comparison of two side plate fixation techniques in an unstable intertrochanteric osteotomy model: Sliding Hip Screw and Percutaneous Compression Plate.
    Krischak GD; Augat P; Beck A; Arand M; Baier B; Blakytny R; Gebhard F; Claes L
    Clin Biomech (Bristol, Avon); 2007 Dec; 22(10):1112-8. PubMed ID: 17900766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical properties of long bones in dogs.
    Markel MD; Sielman E; Rapoff AJ; Kohles SS
    Am J Vet Res; 1994 Aug; 55(8):1178-83. PubMed ID: 7978660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bending stiffness, torsional stability, and insertion force of cementless femoral stems.
    Incavo SJ; Johnson CC; Churchill DL; Beynnon BD
    Am J Orthop (Belle Mead NJ); 2001 Apr; 30(4):323-7. PubMed ID: 11334454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.