These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 8326448)

  • 1. Energy cost of ambulation with different methods of foot and ankle immobilization.
    Fowler PT; Botte MJ; Mathewson JW; Speth SR; Byrne TP; Sutherland DH
    J Orthop Res; 1993 May; 11(3):416-21. PubMed ID: 8326448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy expenditure of paraplegic patients standing and walking with two knee-ankle-foot orthoses.
    Merkel KD; Miller NE; Westbrook PR; Merritt JL
    Arch Phys Med Rehabil; 1984 Mar; 65(3):121-4. PubMed ID: 6703885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy expenditure of diplegic ambulation using flexible plastic ankle foot orthoses.
    Suzuki N; Shinohara T; Kimizuka M; Yamaguchi K; Mita K
    Bull Hosp Jt Dis; 2000; 59(2):76-80. PubMed ID: 10983255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy expenditure in stroke subjects walking with a carbon composite ankle foot orthosis.
    Danielsson A; Sunnerhagen KS
    J Rehabil Med; 2004 Jul; 36(4):165-8. PubMed ID: 15370732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of ankle-foot orthoses on gait and energy expenditure in spina bifida.
    Duffy CM; Graham HK; Cosgrove AP
    J Pediatr Orthop; 2000; 20(3):356-61. PubMed ID: 10823604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of immobilization devices on the load distribution under the foot.
    Shereff MJ; Bregman AM; Kummer FJ
    Clin Orthop Relat Res; 1985; (192):260-7. PubMed ID: 3967431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of different Lokomat walking conditions on the energy expenditure of hemiparetic patients and healthy subjects.
    Krewer C; Müller F; Husemann B; Heller S; Quintern J; Koenig E
    Gait Posture; 2007 Sep; 26(3):372-7. PubMed ID: 17113774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does stride length influence metabolic cost and biomechanical risk factors for knee osteoarthritis in obese women?
    Russell EM; Braun B; Hamill J
    Clin Biomech (Bristol); 2010 Jun; 25(5):438-43. PubMed ID: 20199829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of the Chignon dynamic ankle-foot orthosis using instrumented gait analysis in hemiparetic adults.
    Bleyenheuft C; Caty G; Lejeune T; Detrembleur C
    Ann Readapt Med Phys; 2008 Apr; 51(3):154-60. PubMed ID: 18241950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy consumption in paraplegic ambulation using the reciprocating gait orthosis and electric stimulation of the thigh muscles.
    Hirokawa S; Grimm M; Le T; Solomonow M; Baratta RV; Shoji H; D'Ambrosia RD
    Arch Phys Med Rehabil; 1990 Aug; 71(9):687-94. PubMed ID: 2375676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy consumption during level walking with arm and knee immobilized.
    Hanada E; Kerrigan DC
    Arch Phys Med Rehabil; 2001 Sep; 82(9):1251-4. PubMed ID: 11552199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen consumption, oxygen cost and physiological cost index in polio survivors: a comparison of walking without orthosis, with an ordinary or a carbon-fibre reinforced plastic knee-ankle-foot orthosis.
    Hachisuka K; Makino K; Wada F; Saeki S; Yoshimoto N
    J Rehabil Med; 2007 Oct; 39(8):646-50. PubMed ID: 17896057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency.
    Sawicki GS; Ferris DP
    J Exp Biol; 2009 Jan; 212(Pt 1):21-31. PubMed ID: 19088207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of sole wedges on frontal plane knee kinetics, in isolation and in combination with representative rigid and semi-rigid ankle-foot-orthoses.
    Schmalz T; Blumentritt S; Drewitz H; Freslier M
    Clin Biomech (Bristol); 2006 Jul; 21(6):631-9. PubMed ID: 16567026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of preferred walking speed on treadmill may lead to high oxygen cost on treadmill walking.
    Dal U; Erdogan T; Resitoglu B; Beydagi H
    Gait Posture; 2010 Mar; 31(3):366-9. PubMed ID: 20129785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy expenditure during walking in patients recovering from fractures of the leg.
    Imms FJ; MacDonald IC; Prestidge SP
    Scand J Rehabil Med; 1976; 8(1):1-9. PubMed ID: 935837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical performance of artificial pneumatic muscles to power an ankle-foot orthosis.
    Gordon KE; Sawicki GS; Ferris DP
    J Biomech; 2006; 39(10):1832-41. PubMed ID: 16023126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Physiological Cost Index of walking with an isocentric reciprocating gait orthosis among patients with T(12) - L(1) spinal cord injury.
    Leung AK; Wong AF; Wong EC; Hutchins SW
    Prosthet Orthot Int; 2009 Mar; 33(1):61-8. PubMed ID: 19235067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy cost of ambulation with crutches.
    Fisher SV; Patterson RP
    Arch Phys Med Rehabil; 1981 Jun; 62(6):250-6. PubMed ID: 7235917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Longitudinal assessment of oxygen cost and velocity in children with myelomeningocele: comparison of the hip-knee-ankle-foot orthosis and the reciprocating gait orthosis.
    Thomas SS; Buckon CE; Melchionni J; Magnusson M; Aiona MD
    J Pediatr Orthop; 2001; 21(6):798-803. PubMed ID: 11675558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.